Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (9): 1967-1977.DOI: 10.1016/j.cjche.2018.01.009
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Yuan Li, Hao Zhou, Ning Li, Runchao Qiu, Kefa Cen
Received:
2017-11-03
Revised:
2017-12-06
Online:
2018-10-17
Published:
2018-09-28
Contact:
Hao Zhou,E-mail address:zhouhao@zju.edu.cn
Supported by:
Supported by the National Basic Research Program of China (2015CB251501) and the Innovative Research Groups of the National Natural Science Foundation of China (51621005).
Yuan Li, Hao Zhou, Ning Li, Runchao Qiu, Kefa Cen
通讯作者:
Hao Zhou,E-mail address:zhouhao@zju.edu.cn
基金资助:
Supported by the National Basic Research Program of China (2015CB251501) and the Innovative Research Groups of the National Natural Science Foundation of China (51621005).
Yuan Li, Hao Zhou, Ning Li, Runchao Qiu, Kefa Cen. Conversions of fuel-N, volatile-N, and char-N to NO and N2O during combustion of a single coal particle in O2/N2 and O2/H2O at low temperature[J]. Chin.J.Chem.Eng., 2018, 26(9): 1967-1977.
Yuan Li, Hao Zhou, Ning Li, Runchao Qiu, Kefa Cen. Conversions of fuel-N, volatile-N, and char-N to NO and N2O during combustion of a single coal particle in O2/N2 and O2/H2O at low temperature[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1967-1977.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.01.009
[1] G.C.K. Leung, A. Cherp, J. Jewell, Y.-M. Wei, Securitization of energy supply chains in China, Appl. Energy 123(2014) 316-326.[2] M.C. Carbo, J. Boon, D. Jansen, H.A.J. van Dijk, J.W. Dijkstra, R.W. van den Brink, et al., Steam demand reduction of water-gas shift reaction in IGCC power plants with precombustion CO2 capture, Int. J. Greenh. Gas Control 3(2009) 712-719.[3] C. Zhao, X. Chen, E.J. Anthony, X. Jiang, L. Duan, Y. Wu, et al., Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent, Prog. Energy Combust. Sci. 39(2013) 515-534.[4] R. Stanger, T. Wall, R. Sporl, M. Paneru, S. Grathwohl, M. Weidmann, et al., Oxyfuel combustion for CO2 capture in power plants, Int. J. Greenh. Gas Control 40(2015) 55-125.[5] J. Gibbins, H. Chalmers, Carbon capture and storage, Energy Policy 36(2008) 4317-4322.[6] B.J.P. Buhre, L.K. Elliott, C.D. Sheng, R.P. Gupta, T.F. Wall, Oxy-fuel combustion technology for coal-fired power generation, Prog. Energy Combust. Sci. 31(2005)283-307.[7] B.T. Chorpening, K.H. Casleton, G.A. Richards, CO2 and H2O diluted oxy-fuel combustion for zero-emission power, Proc. Inst. Mech. Eng. A J. Power Energy 219(2005) 121-126.[8] C. Salvador, M. Mitrovic, K. Zanganeh, Novel oxy-steam burner for zero-emission power plants, http://wwwieaghgorg/docs/oxyfuel/OCC1/Session%206_C/2_NOVEL%20OXY-STEAM%20BURNER%20FOR%20ZERO-EMISSION%20POWER%20PLANTSpdf 2009.[9] S. Seepana, S. Jayanti, Steam-moderated oxy-fuel combustion, Energy Convers. Manag. 51(2010) 1981-1988.[10] L. Sheng, X. Liu, J. Si, Y. Xu, Z. Zhou, M. Xu, Simulation and comparative exergy analyses of oxy-steam combustion and O2/CO2 recycled combustion pulverizedcoal-fired power plants, Int. J. Greenh. Gas Control 27(2014)267-278.[11] B. Jin, H. Zhao, C. Zou, C. Zheng, Comprehensive investigation of process characteristics for oxy-steam combustion power plants, Energy Convers. Manag. 99(2015) 92-101.[12] C. Zou, Y. He, Y. Song, Q. Han, Y. Liu, F. Guo, et al., The characteristics and mechanism of the NO formation during oxy-steam combustion, Fuel 158(2015) 874-883.[13] Y. Tu, H. Liu, K. Su, S. Chen, Z. Liu, C. Zheng, et al., Numerical study of H2O addition effects on pulverized coal oxy-MILD combustion, Fuel Process. Technol. 138(2015)252-262.[14] L. Jia, Y. Tan, E.J. Anthony, Emissions of SO2 and NOx during oxy-fuel CFB combustion tests in a mini-circulating fluidized bed combustion reactor, Energy Fuel 24(2010) 910-915.[15] I. Guedea, L.I. Diez, J. Pallares, L.M. Romeo, Influence of O2/CO2 mixtures on the fluid-dynamics of an oxy-fired fluidized bed reactor, Chem. Eng. J. 178(2011) 129-137.[16] Y. Tan, L. Jia, Y. Wu, E.J. Anthony, Experiences and results on a 0.8 MWth oxy-fuel operation pilot-scale circulating fluidized bed, Appl. Energy 92(2012) 343-347.[17] B. Bonn, G. Pelz, H. Baumann, Formation and decomposition of N2O in fluidized bed boilers, Fuel 74(1995) 165-171.[18] S.C. Hill, L. Douglas Smoot, Modeling of nitrogen oxides formation and destruction in combustion systems, Prog. Energy Combust. Sci. 26(2000) 417-458.[19] J.R. Pels, M.A. Wojtowicz, F. Kapteijn, J.A. Moulijn, Trade-off between NOx and N2O in fluidized-bed combustion of coals, Energy Fuel 9(1995) 743-752.[20] D. Boavida, I. Gulyurtlu, L.S. Lobo, I. Cabrita, N2O formation during coal combustion in fluidised beds-Is it controlled by homogeneuous or heterogeneous reactions? Energy Convers. Manag. 37(1996) 1271-1278.[21] A.N. Hayhurst, A.D. Lawrence, The amounts of NOx and N2O formed in a fluidized bed combustor during the burning of coal volatiles and also of char, Combust. Flame 105(1996) 341-357.[22] V.J. Wargadalam, G. Loffler, F. Winter, H. Hofbauer, Homogeneous formation of NO and N2O from the oxidation of HCN and NH3 at 600-1000℃, Combust. Flame 120(2000) 465-478.[23] S. Goel, B. Zhang, A.F. Sarofim, NO and N2O formation during char combustion:is it HCN or surface attached nitrogen? Combust. Flame 104(1996)213-217.[24] H. Miettinen, M. AbulMilh, N2O formation from combustion of char particles with NO, Energy Fuel 10(1996) 421-424.[25] A. Molina, A.F. Sarofim, W. Ren, J. Lu, G. Yue, J.M. Beer, et al., Effect of boundary layer reactions on the conversion of CHAR-N to NO, N2O, and HCN at fluidized-bed combustion conditions, Combust. Sci. Technol. 174(2002) 43-71.[26] B.X. Shen, T. Mi, D.C. Liu, B. Feng, Q. Yao, F. Winter, N2O emission under fluidized bed combustion condition, Fuel Process. Technol. 84(2003) 13-21.[27] D.G. Gavin, M.A. Dorrington, Factors in the conversion of fuel nitrogen to nitric and nitrous oxides during fluidized bed combustion, Fuel 72(1993) 381-388.[28] B. Valentim, M.J. Lemos de Sousa, P. Abelha, D. Boavida, I. Gulyurtlu, Combustion studies in a fluidised bed-The link between temperature, NOx and N2O formation, char morphology and coal type, Int. J. Coal Geol. 67(2006) 191-201.[29] R. Yoshiie, T. Kawamoto, D. Hasegawa, Y. Ueki, I. Naruse, Gas-phase reaction of NOx formation in oxyfuel coal combustion at low temperature, Energy Fuel 25(6) (2011)2481.[30] S. Jankowska, T. Czakiert, G. Krawczyk, P. Borecki, L. Jesionowski, W. Nowak, The effect of oxygen staging on nitrogen conversion in oxy-fuel CFB environment, Chem. Process. Eng. 35(2014) 489-496.[31] B. Roy, L. Chen, S. Bhattacharya, Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal, Environ. Sci. Technol. 48(2014) 14844-14850.[32] M. de las Obras-Loscertales, T. Mendiara, A. Rufas, L.F. de Diego, F. Garcia-Labiano, P. Gayán, et al., NO and N2O emissions in oxy-fuel combustion of coal in a bubbling fluidized bed combustor, Fuel 150(2015) 146-153.[33] H. Hosoda, T. Hirama, N. Azuma, K. Kuramoto, J.-i. Hayashi, T. Chiba, NOx and N2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas:Macroscopic characteristics of their formation and reduction, Energy Fuel 12(1998) 102-108.[34] L. Alvarez, J. Riaza, M.V. Gil, C. Pevida, J.J. Pis, F. Rubiera, NO emissions in oxy-coal combustion with the addition of steam in an entrained flow reactor, Greenh. Gases Sci. Technol. 1(2011) 180-190.[35] S. Li, X. Wei, X. Guo, Effect of H2O vapor on NO reduction by CO:Experimental and kinetic modeling study, Energy Fuel 26(2012) 4277-4283.[36] M.C. Stewart, R.T. Symonds, V. Manovic, A. Macchi, E.J. Anthony, Effects of steam on the sulfation of limestone and NOx formation in an air-and oxy-fired pilot-scale circulating fluidized bed combustor, Fuel 92(2012) 107-115.[37] C. Zhu, S. Liu, H. Liu, J. Yang, X. Liu, G. Xu, NOx emission characteristics of fluidized bed combustion in atmospheres rich in oxygen and water vapor for high-nitrogen fuel, Fuel 139(2015) 346-355.[38] G. Zhang, C. Zhu, Y. Ge, X. Liu, G. Xu, Fluidized bed combustion in steam-rich atmospheres for high-nitrogen fuel:Nitrogen distribution in char and volatile and their contributions to NOx, Fuel 186(2016)204-214.[39] G. Loffler, V.J. Wargadalam, F. Winter, H. Hofbauer, Decomposition of nitrous oxide at medium temperatures, Combust. Flame 120(2000) 427-438.[40] J. Bai, C. Yu, L. Li, P. Wu, Z. Luo, M. Ni, Experimental study on the NO and N2O formation characteristics during biomass combustion, Energy Fuel 27(2013) 515-522.[41] H. Zhou, Y. Huang, G.Y. Mo, Z.Y. Liao, K.F. Cen, Experimental investigations of the conversion of fuel-N, volatile-N and char-N to NOx and N2O during single coal particle fluidized bed combustion, J. Energy Inst. 90(2017) 62-72.[42] H. Zhou, Y. Li, N. Li, R. Qiu, S. Meng, K. Cen, Experimental study of the NO and N2O emissions during devolatilization and char combustion of a single biomass particle in O2/N2 and O2/H2O under low temperature condition, Fuel 206(2017) 162-170.[43] M. Momeni, C. Yin, S.K. Kaer, T.B. Hansen, P.A. Jensen, P. Glarborg, Experimental study on effects of particle shape and operating conditions on combustion characteristics of single biomass particles, Energy Fuel 27(2013) 507-514.[44] H. Lee, S. Choi, An observation of combustion behavior of a single coal particle entrained into hot gas flow, Combust. Flame 162(2015)2610-2620.[45] F. Shan, Q. Lin, K. Zhou, Y. Wu, W. Fu, P. Zhang, et al., An experimental study of ignition and combustion of single biomass pellets in air and oxy-fuel, Fuel 188(2017)277-284.[46] H. Xu, L.D. Smoot, S.C. Hill, Computational model for NOx reduction by advanced reburning, Energy Fuel 13(1999) 411-420.[47] C. Zou, Y. Song, G. Li, S. Cao, Y. He, C. Zheng, The chemical mechanism of steam's effect on the temperature in methane oxy-steam combustion, Int. J. Heat Mass Transf. 75(2014) 12-18.[48] C.-Z. Li, L.L. Tan, Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅲ. Further discussion on the formation of HCN and NH3 during pyrolysis, Fuel 79(2000) 1899-1906.[49] S.W. Bae, S.A. Roh, S.D. Kim, NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process, Chemosphere 65(2006) 170-175.[50] P.G. Kristensen, P. Glarborg, K. DamJohansen, Nitrogen chemistry during burnout in fuel-staged combustion, Combust. Flame 107(1996)211-222.[51] F. Kasuya, P. Glarborg, J.E. Johnsson, K. Dam-Johansen, The thermal DeNOx process:Influence of partial pressures and temperature, Chem. Eng. Sci. 50(1995) 1455-1466.[52] J.M. Jones, P.M. Patterson, M. Pourkashanian, A. Williams, Approaches to modelling heterogeneous char NO formation/destruction during pulverised coal combustion, Carbon 37(1999) 1545-1552.[53] P. Kilpinen, M. Hupa, Homogeneous N2O chemistry at fluidized bed combustion conditions:A kinetic modeling study, Combust. Flame 85(1991) 94-104.[54] H. Liu, B. Feng, J. Lu, C. Zheng, Coal property effects on N2O and NOx formation from circulating fluidized bed combustion of coal, Chem. Eng. Commun. 192(2005) 1482-1489.[55] J.R. Pels, M.A. Wójtowicz, J.A. Moulijn, Rank dependence of N2O emission in fluidized-bed combustion of coal, Fuel 72(1993) 373-379.[56] K.-M. Hansson, J. Samuelsson, C. Tullin, L.-E. Amand, Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds, Combust. Flame 137(2004)265-277.[57] M. Becidan, O. Skreiberg, J.E. Hustad, NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues, Energy Fuel 21(2007) 1173-1180.[58] C. Bu, B. Leckner, X. Chen,A. Gómez-Barea, D.Liu, D. Pallares, Devolatilization of a single fuel particle ina fluidized bed under oxy-combustion conditions. Part B:Modeling and comparison with measurements, Combust. Flame 162(2015) 809-818.[59] L.-E. Amand, B. Leckner, Reduction of N2O in a circulating fluidized-bed combustor, Fuel 73(1994) 1389-1397. |
[1] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 8-15. |
[2] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[3] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[4] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[5] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[6] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[7] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[8] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[9] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[10] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[11] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[12] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[13] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[14] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[15] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||