[1] W. Wu, W. Guo, W. Xiao, M. Luo, Methanol conversion to olefins (MTO) over H-ZSM-5:Evidence of product distribution governed by methanol conversion, Fuel Process. Technol. 108(2013) 19-24.[2] X. Wu, R.G. Anthony, Effect of feed composition on methanol conversion to light olefins over SAPO-34, Appl. Catal. A 218(1) (2001) 241-250.[3] X. Wu, M.G. Abraha, R.G. Anthony, Methanol conversion on SAPO-34:reaction condition for fixed-bed reactor, Appl. Catal. A 260(1) (2004) 63-69.[4] M. Sugimoto, H. Katsuno, K. Takatsu, N. Kawata, Correlation between the crystal size and catalytic properties of ZSM-5 zeolites, Zeolites 7(1987) 503-507.[5] F. Bleken, S. Chavan, U. Olsbye, M. Boltz, F. Ocampo, B. Louis, Conversion of methanol into light olefins over ZSM-5 zeolite:Strategy to enhance propylene selectivity, Appl. Catal. A 447-448(2012) 178-185.[6] R. Khare, D. Millar, A. Bhan, A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI, J. Catal. 321(2015) 23-31.[7] R. Feng, X. Yan, X. Hua, Z. Yan, J. Lin, Z. Li, K. Hou, M. Rood, Surface dealumination of micro-sized ZSM-5 for improving propylene selectivity and catalyst lifetime in methanol to propylene (MTP) reaction, Catal. Commun. 109(2018) 1-5.[8] H. Koempel, W. Liebner, Lurgi's methanol to propylene (MTP®) report on a successful commercialization, Stud. Surf. Sci. Catal. 167(2007) 261-267.[9] X. Yong, K. Zhang, Advances in application progress of Lurgi's methanol to propylene and its process characteristic, Technol. Dev. Chem. Ind. 10(2012) 28-30.[10] X. Yong, Z. Du, Y. Li, C. Luo, Application status of Lurgi methanol to propylene technology and development of key catalyst, Technol. Dev. Chem. Ind. 9(2013) 18-21.[11] Q. Chen, S. Li, J. Li, Energy efficiency optimization of methanol synthesis and distill units, Chem. Eng. China 10(2012) 1-5.[12] B. Vora, T. Maker, Process for Producing Light Olefins from Crude Methanol, US Pat., 5714662, 1998[13] M.J.G. Janssen, Controlling the Ration of Ethylene to Propylene Produced in an Oxygenate to Olefin Conversion Process, WO Pat., 200552872, 2005[14] F.F. Madeira, N.S. Gnep, P. Magnoux, S. Maury, N. Cadran, Ethanol transformation over HFAU, HBEA and HMFI zeolites presenting similar Brönsted acidity, Appl. Catal. A Gen. 367(2009) 39-46.[15] W. Song, D.M. Marcus, H. Fu, J.O. Ehresmann, J.F. Haw, An oft-studied reaction that may never have been:Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34, J. Am. Chem. Soc. 124(2002) 3844-3845.[16] W. Song, Y. Wei, Z. Liu, Chemistry of the methanol to olefin conversion, Zeolites in Sustainable Chemistry, Springer, Berlin, Heidelberg 2016, pp. 299-346.[17] X. Yu, A study on moving bed methanol to propylene reaction process, PhD Thesis, Zhejiang University, China, 2011(in Chinese).[18] R. Johansson, S.L. Hruby, J. Rass-Hansen, C.H. Christensen, The hydrocarbon pool in ethanol-to-gasoline over HZSM-5 catalysts, Catal. Lett. 127(2009) 1-6.[19] I.M. Dahl, S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:I. isotopic labeling studies of the co-reaction of ethene and methanol, 161(1996) 304-309.[20] U.V. Mentzel, S. Shunmugavel, S.L. Hruby, C.H. Christensen, M.S. Holm, High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5, J. Am. Chem. Soc. 131(46) (2009) 17009-17013.[21] L. Wang, G. Yan, X. Yong, Discussion on operational problems of the coal-based methanol to propylene plant, Coal Chem. Ind. 2(2014) 43-46(in Chinese).[22] H. Fan, T.S. Zhao, Process simulation and optimization for methanol to propylene, Ind. Catal. 8(2011) 56-61(in Chinese).[23] L. Mao, Simulation and Optimization of the Process of Producing DME by Gasified Methanol, PhD Thesis, Zhejiang University, China, 2013(in Chinese). |