Chinese Journal of Chemical Engineering ›› 2022, Vol. 46 ›› Issue (6): 161-172.DOI: 10.1016/j.cjche.2021.04.022
Previous Articles Next Articles
Xiangjun Li, Shujun Li, Xiaoping Wang, Muhammad Asif Nawaz, Dianhua Liu
Received:
2021-02-24
Revised:
2021-03-26
Online:
2022-07-20
Published:
2022-06-28
Contact:
Dianhua Liu,E-mail:dhliu@ecust.edu.cn
Supported by:
Xiangjun Li, Shujun Li, Xiaoping Wang, Muhammad Asif Nawaz, Dianhua Liu
通讯作者:
Dianhua Liu,E-mail:dhliu@ecust.edu.cn
基金资助:
Xiangjun Li, Shujun Li, Xiaoping Wang, Muhammad Asif Nawaz, Dianhua Liu. Polyoxymethylene dimethyl ethers synthesis from methanol and formaldehyde solution over one-pot synthesized spherical mesoporous sulfated zirconia[J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 161-172.
Xiangjun Li, Shujun Li, Xiaoping Wang, Muhammad Asif Nawaz, Dianhua Liu. Polyoxymethylene dimethyl ethers synthesis from methanol and formaldehyde solution over one-pot synthesized spherical mesoporous sulfated zirconia[J]. 中国化学工程学报, 2022, 46(6): 161-172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.022
[1] İ.A. Reşitoğlu, K. Altinişik, A. Keskin, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems, Clean Technol. Environ. Policy, 17 (1) (2015) 15-27 [2] Y. Çelebi, H. Aydın, An overview on the light alcohol fuels in diesel engines, Fuel, 236 (2019) 890-911 [3] Z.H. Zhang, R. Balasubramanian, Effects of oxygenated fuel blends on carbonaceous particulate composition and particle size distributions from a stationary diesel engine, Fuel, 141 (2015) 1-8 [4] Z. Guo, H. Guo, Q. Zeng, Investigation on di-(2-Methoxypropyl) carbonate used as a clean oxygenated fuel for diesel Engine, J. Energy Resour. Technol., 140 (1) (2017) 012201 [5] J. Wei, Y. Zeng, M. Pan, Y. Zhuang, L. Qiu, T. Zhou, Y. Liu, Morphology analysis of soot particles from a modern diesel engine fueled with different types of oxygenated fuels, Fuel, 267 (2020) 117248 [6] L. Lautenschütz, D. Oestreich, P. Seidenspinner, U. Arnold, E. Dinjus, J. Sauer, Physico-chemical properties and fuel characteristics of oxymethylene dialkyl ethers, Fuel, 173 (2016) 129-137 [7] C.J. Baranowski, A.M. Bahmanpour, O. Kröcher, Catalytic synthesis of polyoxymethylene dimethyl ethers (OME):A review, Appl. Catal. B., 217 (2017) 407-420 [8] B. Lumpp, D. Rothe, C. Pastötter, R. Lämmermann, E. Jacob, Oxymethylene ethers as diesel fuel additives of the future, MTZ Worldw, 72 (3) (2011) 34-38 [9] J. Liu, H. Wang, Y. Li, Z. Zheng, Z. Xue, H. Shang, M. Yao, Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine, Fuel, 177 (2016) 206-216 [10] H. Liu, Z. Wang, J. Zhang, J. Wang, S. Shuai, Study on combustion and emission characteristics of polyoxymethylene dimethyl ethers/diesel blends in light-duty and heavy-duty diesel engines, Appl. Energy, 185 (2017) 1393-1402 [11] H. Liu, Z. Wang, J. Wang, X. He, Y. Zheng, Q. Tang, J. Wang, Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends, Energy, 88 (2015) 793-800 [12] W. Ahmad, F.L. Chan, A. Hoadley, H.T. Wang, A. Tanksale, Synthesis of oxymethylene dimethyl ethers (OMEn) via methanol mediated COx hydrogenation over Ru/BEA catalysts, Appl. Catal. B, 269 (2020) 118765 [13] D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde, Chem. Eng. Sci., 163 (2017) 92-104 [14] B.Y. Wang, X.M. Yan, X.Y. Zhang, H.Y. Zhang, F.P. Li, Citric acid-modified beta zeolite for polyoxymethylene dimethyl ethers synthesis:The textural and acidic properties regulation, Appl. Catal. B, 266 (2020) 118645 [15] P. Haltenort, K. Hackbarth, D. Oestreich, L. Lautenschütz, U. Arnold, J. Sauer, Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane, Catal. Commun., 109 (2018) 80-84 [16] F. Liu, T. Wang, Y. Zheng, J. Wang, Synergistic effect of Brønsted and Lewis acid sites for the synthesis of polyoxymethylene dimethyl ethers over highly efficient SO42-/TiO2 catalysts, J. Catal., 355 (2017) 17-25 [17] R. Wang, Z. Wu, Z. Qin, C. Chen, H. Zhu, J. Wu, G. Chen, W. Fan, J. Wang, Graphene oxide:an effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene, Catal. Sci. Technol., 6 (4) (2016) 993-997 [18] Y. Zheng, Q. Tang, T. Wang, J. Wang, Kinetics of synthesis of polyoxymethylene dimethyl ethers from paraformaldehyde and dimethoxymethane catalyzed by ion-exchange resin, Chem. Eng. Sci., 134 (2015) 758-766 [19] J. Burger, M. Siegert, E. Ströfer, H. Hasse, Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:Properties, synthesis and purification concepts, Fuel, 89 (11) (2010) 3315-3319 [20] H. Schelling, E. Stroefer, R. Pinkos, A. Haunert, G.-D. Tebben, H. Hasse, S. Blagov, Method for producing polyoxymethylene dimethyl ethers, US Pat., 0260094A1 (2007). [21] E. Stroefer, H. Hasse, S. Blagov, Process for preparing polyoxymethylene dimethyl ethers from methanol and formaldehyde, US Pat., 7700809B2 (2010). [22] H. Song, M. Kang, F. Jin, G. Wang, Z. Li, J. Chen, Brønsted-acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dialkyl ethers, Chin. J. Catal., 38 (5) (2017) 853-861 [23] D. Wang, F. Zhao, G. Zhu, C. Xia, Production of eco-friendly poly(oxymethylene) dimethyl ethers catalyzed by acidic ionic liquid:A kinetic investigation, Chem. Eng. J., 334 (2018) 2616-2624 [24] R. Peláez, P. Marín, S. Ordóñez, Synthesis of poly (oxymethylene) dimethyl ethers from methylal and trioxane over acidic ion exchange resins:a kinetic study, Chem. Eng. J., 396 (2020) 125305 [25] X.-J. Gao, W.-F. Wang, Y.-Y. Gu, Z.-Z. Zhang, J.-F. Zhang, Q.-D. Zhang, N. Tsubaki, Y.-Z. Han, Y.-S. Tan, Synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation over carbon-based catalysts, ChemCatChem, 10 (1) (2018) 273-279 [26] Y. Kim, J. Kim, H.W. Kim, T.-W. Kim, H.J. Kim, H. Chang, M.B. Park, H.-J. Chae, Sulfated tin oxide as highly selective catalyst for the chlorination of methane to methyl chloride, ACS Catal., 9 (10) (2019) 9398-9410 [27] Z. Zhang, J. Huang, H. Xia, Q. Dai, Y. Gu, Y. Lao, X. Wang, Chlorinated volatile organic compound oxidation over SO42-/Fe2O3 catalysts, J. Catal., 360 (2018) 277-289 [28] X. Zhang, H. Lu, K. Wu, Y. Liu, C. Liu, Y. Zhu, B. Liang, Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO42--TiO2 in water-ethanol solvent, Chin. J. Chem. Eng., 28 (1) (2020) 136-142 [29] K. Saravanan, B. Tyagi, R.S. Shukla, H. Bajaj, Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst, Appl. Catal. B, 172 (2015) 108-115 [30] H. Li, H. Song, F. Zhao, L. Chen, C. Xia, Chemical equilibrium controlled synthesis of polyoxymethylene dimethyl ethers over sulfated titania, J. Energy Chem., 24 (2) (2015) 239-244 [31] H. Li, H. Song, L. Chen, C. Xia, Designed SO42-/Fe2O3-SiO2 solid acids for polyoxymethylene dimethyl ethers synthesis:the acid sites control and reaction pathways, Appl. Catal. B, 165 (2015) 466-476 [32] H. Li, Y. Li, T. Guo, J. Zhang, L. He, The green and expeditious synthesis of sulfated titania with enhanced catalytic activity in polyoxymethylene dimethyl ethers synthesis, React. Kinet., Mech. Catal., 124 (1) (2018) 139-151 [33] V.S. Marakatti, S. Marappa, E.M. Gaigneaux, Sulfated zirconia:an efficient catalyst for the Friedel-Crafts monoalkylation of resorcinol with methyl tertiary butyl ether to 4-tertiary butylresorcinol, New J. Chem., 43 (20) (2019) 7733-7742 [34] X. Zhang, A.I. Rabee, M. Isaacs, A.F. Lee, K. Wilson, Sulfated zirconia catalysts for D-sorbitol cascade cyclodehydration to isosorbide:impact of zirconia phase, ACS Sustainable Chem. Eng., 6 (11) (2018) 14704-14712 [35] K. Saravanan, B. Tyagi, H.C. Bajaj, Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol, Appl. Catal. B, 192 (2016) 161-170 [36] Y. Luo, Z. Mei, N. Liu, H. Wang, C. Han, S. He, Synthesis of mesoporous sulfated zirconia nanoparticles with high surface area and their applies for biodiesel production as effective catalysts, Catal. Today, 298 (2017) 99-108 [37] P. Wang, Y. Yue, T. Wang, X. Bao, Alkane isomerization over sulfated zirconia solid acid system, Int. J. Energy Res., 44 (5) (2020) 3270-3294 [38] U. Ciesla, M. Froba, G.D. Stucky, F. Schuth, Highly ordered porous zirconias from surfactant-controlled syntheses:zirconium oxide-sulfate and zirconium oxo phosphate, Chem. Mater., 11 (2) (1999) 227-234 [39] A. Osatiashtiani, A.F. Lee, D.R. Brown, J.A. Melero, G. Morales, K. Wilson, Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose, Catal. Sci. Technol., 4 (2) (2014) 333-342 [40] S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, New York, (1982) [41] Y. Qu, Y. Zhao, S. Xiong, C. Wang, S. Wang, L. Zhu, L. Ma, Conversion of glucose into 5-Hydroxymethylfurfural and levulinic acid catalyzed by SO42-/ZrO2 in a biphasic solvent system, Energy Fuels, 34 (9) (2020) 11041-11049 [42] X. Yang, F.C. Jentoft, R.E. Jentoft, F. Girgsdies, T. Ressler, Sulfated zirconia with ordered mesopores as an active catalyst for n-Butane isomerization, Catal. Lett., 81 (1) (2002) 25-31 [43] C.Y. Tai, B.-Y. Hsiao, H.-Y. Chiu, Preparation of spherical hydrous-zirconia nanoparticles by low temperature hydrolysis in a reverse microemulsion, Colloids Surf., A, 237 (1-3) (2004) 105-111 [44] A. Sinhamahapatra, N. Sutradhar, M. Ghosh, H.C. Bajaj, A.B. Panda, Mesoporous sulfated zirconia mediated acetalization reactions, Appl. Catal., A, 402 (1-2) (2011) 87-93 [45] N. Liu, X. Guo, A. Navrotsky, L. Shi, D. Wu, Thermodynamic complexity of sulfated zirconia catalysts, J. Catal., 342 (2016) 158-163 [46] S. Labidi, M. Ben Amar, J.-P. Passarello, B. Le Neindre, A. Kanaev, Design of novel sulfated nanozirconia catalyst for biofuel synthesis, Ind. Eng. Chem. Res., 56 (6) (2017) 1394-1403 [47] Y. Zhang, W.-T. Wong, K.-F. Yung, Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia, Appl. Energy, 116 (2014) 191-198 [48] M.K. Mishra, B. Tyagi, R.V. Jasra, Effect of synthetic parameters on structural, textural, and catalytic properties of nanocrystalline sulfated zirconia prepared by sol-gel technique, Ind. Eng. Chem. Res., 42 (23) (2003) 5727-5736 [49] A.F. Bedilo, K.J. Klabunde, Synthesis of catalytically active sulfated zirconia aerogels, J. Catal., 176 (2) (1998) 448-458 [50] Z. Ma, X. Meng, N. Liu, C. Yang, L. Shi, Preparation, characterization, and isomerization catalytic performance of palladium loaded zirconium hydroxide/sulfated zirconia, Ind. Eng. Chem. Res., 57 (43) (2018) 14377-14385 [51] H. Matsuhashi, H. Nakamura, T. Ishihara, S. Iwamoto, Y. Kamiya, J. Kobayashi, Y. Kubota, T. Yamada, T. Matsuda, K. Matsushita, Characterization of sulfated zirconia prepared using reference catalysts and application to several model reactions, Appl. Catal., A, 360 (1) (2009) 89-97 [52] Y. Zhang, T. Chen, G. Zhang, G. Wang, H. Zhang, Mesoporous Al-promoted sulfated zirconia as an efficient heterogeneous catalyst to synthesize isosorbide from sorbitol, Appl. Catal., A, 562 (2018) 258-266 [53] V.G. Deshmane, Y.G. Adewuyi, Mesoporous nanocrystalline sulfated zirconia synthesis and its application for FFA esterification in oils, Appl. Catal., A, 462 (2013) 196-206 [54] S. Ardizzone, C.L. Bianchi, G. Cappelletti, F. Porta, Liquid-phase catalytic activity of sulfated zirconia from sol-gel precursors:the role of the surface features, J. Catal., 227 (2) (2004) 470-478 [55] H. Wang, Y. Li, F. Yu, Q. Wang, B. Xing, D. Li, R. Li, A stable mesoporous super-acid nanocatalyst for eco-friendly synthesis of biodiesel, Chem. Eng. J., 364 (2019) 111-122 [56] M.S. La Ore, K. Wijaya, W. Trisunaryanti, W.D. Saputri, E. Heraldy, N.W. Yuwana, P.L. Hariani, A. Budiman, S. Sudiono, The synthesis of SO4/ZrO2 and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of low-grade coconut oil into biodiesel, J. Environ. Chem. Eng., 8 (5) (2020) 104205 [57] C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal., 141 (2) (1993) 347-354 [58] Q.-H. Xia, K. Hidajat, S. Kawi, Synthesis of SO42-/ZrO2/MCM-41 as a new superacid catalyst, Chem. Commun., (22) (2000) 2229-2230 [59] Z. Ma, X. Meng, C. Yang, N. Liu, Y. Zhang, L. Shi, Study of high-aluminum-content sulfated zirconia:influence of aluminum content and washing, Ind. Eng. Chem. Res., 56 (19) (2017) 5598-5606 [60] K.T. Lee, Y.S. Jung, S.M. Oh, Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries, J. Am. Chem. Soc., 125 (19) (2003) 5652-5653 [61] N. Schmitz, J. Burger, H. Hasse, Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions, Ind. Eng. Chem. Res., 54 (50) (2015) 12553-12560 [62] C.J. Baranowski, M. Roger, A.M. Bahmanpour, O. Kröcher, Nature of synergy between Brønsted and Lewis acid sites in Sn-Beta zeolites for polyoxymethylene dimethyl ethers synthesis, ChemSusChem, 12 (19) (2019) 4421-4431 [63] A. Fink, C.H. Gierlich, I. Delidovich, R. Palkovits, Systematic Catalyst screening of zeolites with various frameworks and Si/Al ratios to identify optimum acid strength in OME synthesis, ChemCatChem, 12 (22) (2020) 5710-5719 [64] Z. Xue, C. Lu, H. Shang, G. An, J. Zhang, S. Zhao, Y. Liu, Synthesis of polyoxymethylene dimethyl ethers over different microporous and mesoporous zeolites:the effects of acidity and pore size, New J. Chem., 44 (7) (2020) 2788-2796 [65] S. Hammache, J.G. Goodwin Jr., Characteristics of the active sites on sulfated zirconia for n-butane isomerization, J. Catal., 218 (2) (2003) 258-266 [66] X. Li, J. Cao, M.A. Nawaz, D. Liu, Synergy of Lewis and Brønsted acid sites for polyoxymethylene dimethyl ether synthesis from methanol and formaldehyde solution over Zr4+ modified sulfonated resin, Fuel, 289 (2021) 119867 [67] C. Pezzotta, V.S. Marakatti, E.M. Gaigneaux, Role of Lewis and Brønsted acid sites in resorcinol tert-butylation over heteropolyacid-based catalysts, Catal. Sci. Technol., 10 (23) (2020) 7984-7997 |
[1] | Siyue Ren, Xiao Feng. Emergy evaluation of aromatics production from methanol and naphtha [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 134-141. |
[2] | Youwei Yang, Jingyu Zhang, Yueqi Gao, Busha Assaba Fayisa, Antai Li, Shouying Huang, Jing Lv, Yue Wang, Xinbin Ma. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 77-85. |
[3] | Wanyuan Wang, Chengxin Wen, Daoyuan Zheng, Chunhu Li, Junjie Bian, Xinbo Wang. Simultaneous degradation of RhB and reduction of Cr(VI) by MIL-53(Fe)/Polyaniline (PANI) with the mediation of organic acid [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 55-63. |
[4] | Kaili Zhang, Ligang Wei, Qingqin Sun, Jian Sun, Kunlan Li, Shangru Zhai, Qingda An, Junwang Zhang. Effects of formaldehyde on fermentable sugars production in the low-cost pretreatment of corn stalk based on ionic liquids [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 406-414. |
[5] | Busha Assaba Fayisa, Yushan Xi, Youwei Yang, Yueqi Gao, Antai Li, Mei-Yan Wang, Jing Lv, Shouying Huang, Yue Wang, Xinbin Ma. Pt-modulated Cu/SiO2 catalysts for efficient hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 366-373. |
[6] | Jie Wei, Maoshuai Li, Meiyan Wang, Shixiang Feng, Weikang Dai, Qi Yang, Yi Feng, Wanxin Yang, Cheng Yang, Xinbin Ma. Hydroformylation of formaldehyde to glycolaldehyde: An alternative synthetic route for ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 3-16. |
[7] | Junhua Gao, Keming Ji, Hao Zhou, Jiayao Xun, Zenghou Liu, Kan Zhang, Ping Liu. Synthesis and characterization of BZSM-5 and its catalytic performance in the methanol to hydrocarbons reaction [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 196-203. |
[8] | Huaiqing An, Hua Li, Jibin Zhou, Jinling Zhang, Tao Zhang, Mao Ye, Zhongmin Liu. Kinetics of steam regeneration of SAPO-34 zeolite catalyst in methanol-to-olefins (MTO) process [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 231-238. |
[9] | Zhiquan Wang, Liang Wang, Zhihong Yuan, Bingzhen Chen. Data-driven optimal operation of the industrial methanol to olefin process based on relevance vector machine [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 106-115. |
[10] | Xiaofei Qin, Sen Lei, Xubin Zhang, Chen Cao, Feng Xin, Honglin Chen, Xiaoming Zhang, Yachen Yin, Guilian Wu. Formation kinetics of polyoxymethylene dimethyl ethers from methylal and trioxane with little water [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 139-146. |
[11] | Yunke Wang, Yongjia Li, Yenan Zhang, Guozheng Zha, Feng Liang, Yongnian Dai, Yaochun Yao. Influence of synergistic effect of LiNi0.8Co0.15Al0.05O2@Cr2O5 composite on the electrochemical properties [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 327-336. |
[12] | Chaofeng Zhang, Tonglu Zhang, Jing Zhang, Jiandong Zhang, Ruifeng Li. Controllable synthesis of polyoxymethylene dimethyl ethers by ionic liquids encapsulated in mesoporous SBA-16 [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 175-182. |
[13] | Muralikrishna Boni, S. Srinivasa Rao, G. Naga Srinivasulu. Performance evaluation of the incorporation of different wire meshes in between perforated current collectors and membrane electrode assembly on the Passive Direct methanol fuel cell [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 360-367. |
[14] | Lihua Qian, Guojun Lan, Xiaoyan Liu, Zhenqing Li, Ying Li. Aqueous-phase hydrogenation of levulinic acid over carbon layer protected silica-supported cobalt-ruthenium catalysts [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 114-122. |
[15] | Haowei Huang, Dexuan Dong, Weijie Li, Xinya Zhang, Li Zhang, Ying Chen, Xinxin Sheng, Xiang Lu. Synergistic effect of MXene on the flame retardancy and thermal degradation of intumescent flame retardant biodegradable poly (lactic acid) composites [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1981-1993. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||