Chinese Journal of Chemical Engineering ›› 2022, Vol. 46 ›› Issue (6): 150-160.DOI: 10.1016/j.cjche.2021.03.029
Previous Articles Next Articles
Qilong Ge1,2, Qi Tian1,3, Sufang Wang1, Fang Zhu1
Received:
2021-01-09
Revised:
2021-02-27
Online:
2022-07-20
Published:
2022-06-28
Contact:
Qi Tian,E-mail:tianqi@tyut.edu.cn
Supported by:
Qilong Ge1,2, Qi Tian1,3, Sufang Wang1, Fang Zhu1
通讯作者:
Qi Tian,E-mail:tianqi@tyut.edu.cn
基金资助:
Qilong Ge, Qi Tian, Sufang Wang, Fang Zhu. Synergistic effects of phosphoric acid modified hydrochar and coal gangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil[J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 150-160.
Qilong Ge, Qi Tian, Sufang Wang, Fang Zhu. Synergistic effects of phosphoric acid modified hydrochar and coal gangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil[J]. 中国化学工程学报, 2022, 46(6): 150-160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.03.029
[1] M.A. Mujtaba Munir, G.J. Liu, B. Yousaf, M.U. Ali, Q. Abbas, H. Ullah, Synergistic effects of biochar and processed fly ash on bioavailability, transformation and accumulation of heavy metals by maize (Zea mays L.) in coal-mining contaminated soil, Chemosphere 240 (2020) 124845 [2] L.C. Liu, L. Cheng, L.T. Zhao, Y. Cao, C. Wang, Investigating the significant variation of coal consumption in China in 2002-2017, Energy 207 (2020) 118307 [3] J.Y. Li, J.M. Wang, Comprehensive utilization and environmental risks of coal gangue:A review, J. Clean. Prod. 239 (2019) 117946 [4] A.H. Ozdeniz, O. Corumluoglu, I. Kalayci, The relationship between the natural compaction and the spontaneous combustion of industrial-scale coal stockpiles, Energy Sources Part A:Recover. Util. Environ. Eff. 33 (2) (2010) 121-129 [5] Q.L. Ge, M. Moeen, Q. Tian, J.J. Xu, K.Q. Feng, Highly effective removal of Pb2+ in aqueous solution by Na-X zeolite derived from coal gangue, Environ Sci Pollut Res Int 27 (7) (2020) 7398-7408 [6] T.T. Qian, J.H. Li, Synthesis of Na-A zeolite from coal gangue with the in situ crystallization technique, Adv. Powder Technol. 26 (1) (2015) 98-104 [7] P. Castaldi, L. Santona, C. Cozza, V. Giuliano, C. Abbruzzese, V. Nastro, P. Melis, Thermal and spectroscopic studies of zeolites exchanged with metal cations, J. Mol. Struct. 734 (1-3) (2005) 99-105 [8] Y. Hamid, L. Tang, M. Yaseen, B. Hussain, A. Zehra, M.Z. Aziz, Z.L. He, X.E. Yang, Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system, Chemosphere 214 (2019) 259-268 [9] F. Shen, R.M. Liao, A. Ali, A. Mahar, D. Guo, R.H. Li, S. Xining, M.K. Awasthi, Q. Wang, Z.Q. Zhang, Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China, Ecotoxicol Environ Saf 139 (2017) 254-262 [10] L.W. Li, F. Zhu, Y.H. Lu, J. Guan, Synthesis, adsorption and selectivity of inverse emulsion Cd(II) imprinted polymers, Chin. J. Chem. Eng. 26 (3) (2018) 494-500 [11] H.K. Liu, F. Xu, Y.L. Xie, C. Wang, A. Zhang, L.L. Li, H. Xu, Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil, Sci Total Environ 645 (2018) 702-709 [12] C. Wu, L.Z. Shi, S.G. Xue, W. Li, X.X. Jiang, M. Rajendran, Z.Y. Qian, Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils, Sci Total Environ 647 (2019) 1158-1168 [13] A.H. Lahori, Z.Q. Zhang, Z.Y. Guo, R.H. Li, A. Mahar, M.K. Awasthi, P. Wang, F. Shen, F. Kumbhar, T.A. Sial, J.C. Zhao, D. Guo, Beneficial effects of tobacco biochar combined with mineral additives on (im)mobilization and (bio)availability of Pb, Cd, Cu and Zn from Pb/Zn smelter contaminated soils, Ecotoxicol Environ Saf 145 (2017) 528-538 [14] S. Tahervand, M. Jalali, Sorption and desorption of potentially toxic metals (Cd, Cu, Ni and Zn) by soil amended with bentonite, calcite and zeolite as a function of pH, J. Geochem. Explor. 181 (2017) 148-159 [15] S. Bashir, Q. Hussain, M. Akmal, M. Riaz, H.Q. Hu, S.S. Ijaz, M. Iqbal, S. Abro, S. Mehmood, M. Ahmad, Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil, J. Soils Sediments 18 (3) (2018) 874-886 [16] S. Bashir, J. Zhu, Q.L. Fu, H.Q. Hu, Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments, Chemosphere 194 (2018) 579-587 [17] P. Netherway, S.M. Reichman, M. Laidlaw, K. Scheckel, N. Pingitore, G. Gascó, A. Méndez, A. Surapaneni, J. Paz-Ferreiro, Phosphorus-rich biochars can transform lead in an urban contaminated soil, J Environ Qual 48 (4) (2019) 1091-1099 [18] J.L. Wang, S.Z. Wang, Preparation, modification and environmental application of biochar:A review, J. Clean. Prod. 227 (2019) 1002-1022 [19] N. Zhou, H.G. Chen, Q.J. Feng, D.H. Yao, H.L. Chen, H.Y. Wang, Z. Zhou, H.Y. Li, Y. Tian, X.Y. Lu, Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels, J. Clean. Prod. 165 (2017) 221-230 [20] Q.L. Ge, Q. Tian, M. Moeen, S.F. Wang, Facile synthesis of cauliflower leaves biochar at low temperature in the air atmosphere for Cu(II) and Pb(II) removal from water, Materials (Basel) 13 (14) (2020) E3163 [21] T. Zhao, Y. Yao, D.R. Li, F. Wu, C.Z. Zhang, B. Gao, Facile low-temperature one-step synthesis of pomelo peel biochar under air atmosphere and its adsorption behaviors for Ag(I) and Pb(II), Sci Total Environ 640-641 (2018) 73-79 [22] Z.W. Wang, X. Yang, T.T. Qin, G.W. Liang, Y. Li, X.Y. Xie, Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay-biochar composite using natural attapulgite and cauliflower leaves, Environ Sci Pollut Res Int 26 (8) (2019) 7463-7475 [23] Z.W. Tang, L.Z. Zhang, Q.F. Huang, Y.F. Yang, Z.Q. Nie, J.L. Cheng, J. Yang, Y.W. Wang, M. Chai, Contamination and risk of heavy metals in soils and sediments from a typical plastic waste recycling area in North China, Ecotoxicol Environ Saf 122 (2015) 343-351 [24] G.X. Zhang, X.F. Guo, Z.H. Zhao, Q.S. He, S.F. Wang, Y.E. Zhu, Y.L. Yan, X.T. Liu, K. Sun, Y. Zhao, T.W. Qian, Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil, Environ Pollut 218 (2016) 513-522 [25] H.Y. Chen, W.Y. Li, J.J. Wang, H.J. Xu, Y.L. Liu, Z. Zhang, Y.T. Li, Y.L. Zhang, Adsorption of cadmium and lead ions by phosphoric acid-modified biochar generated from chicken feather:Selective adsorption and influence of dissolved organic matter, Bioresour Technol 292 (2019) 121948 [26] B. Wu, G.L. Cheng, K. Jiao, W.J. Shi, C. Wang, H. Xu, Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil, Sci Total Environ 562 (2016) 732-739 [27] T. Aldahri, J. Behin, H. Kazemian, S. Rohani, Synthesis of zeolite Na-P from coal fly ash by thermo-sonochemical treatment, Fuel 182 (2016) 494-501 [28] L.P. Meier, G. Kahr, Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine, Clays Clay Miner. 47 (3) (1999) 386-388 [29] Z. Ahmad, B. Gao, A. Mosa, H.W. Yu, X.Q. Yin, A. Bashir, H. Ghoveisi, S.S. Wang, Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass, J. Clean. Prod. 180 (2018) 437-449 [30] H. Zhang, J.G. Shao, S.H. Zhang, X. Zhang, H.P. Chen, Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil, J Hazard Mater 390 (2020) 121349 [31] H.B. Peng, P. Gao, G. Chu, B. Pan, J.H. Peng, B.S. Xing, Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars, Environ Pollut 229 (2017) 846-853 [32] Y.W. Xue, B. Gao, Y. Yao, M. Inyang, M. Zhang, A.R. Zimmerman, K.S. Ro, Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals:Batch and column tests, Chem. Eng. J. 200-202 (2012) 673-680 [33] Y. Hamid, L. Tang, B. Hussain, M. Usman, H.K. Gurajala, M.S. Rashid, Z.L. He, X.E. Yang, Efficiency of lime, biochar, Fe containing biochar and composite amendments for Cd and Pb immobilization in a co-contaminated alluvial soil, Environ Pollut 257 (2020) 113609 [34] M. Ahmad, A.R.A. Usman, A.S. Al-Faraj, M. Ahmad, A. Sallam, M.I. Al-Wabel, Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants, Chemosphere 194 (2018) 327-339 [35] Z.H. Yang, L.F. Liang, W.C. Yang, W. Shi, Y.P. Tong, L.Y. Chai, S.K. Gao, Q. Liao, Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites, Environ Sci Pollut Res Int 25 (12) (2018) 11970-11980 [36] E.S. Penido, G.C. Martins, T.B.M. Mendes, L.C.A. Melo, I. do Rosário Guimarães, L.R.G. Guilherme, Combining biochar and sewage sludge for immobilization of heavy metals in mining soils, Ecotoxicol. Environ. Saf. 172 (2019) 326-333. [37] R.L. Gao, H.Q. Hu, Q.L. Fu, Z.H. Li, Z.Q. Xing, U. Ali, J. Zhu, Y.H. Liu, Remediation of Pb, Cd, and Cu contaminated soil by co-pyrolysis biochar derived from rape straw and orthophosphate:Speciation transformation, risk evaluation and mechanism inquiry, Sci Total Environ 730 (2020) 139119 [38] S. Lazarević, I. Janković-Častvan, D. Jovanović, S. Milonjić, D. Janaćković, R. Petrović, Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites, Appl. Clay Sci. 37 (1-2) (2007) 47-57 [39] J. Zhu, M. Li, M. Whelan, Phosphorus activators contribute to legacy phosphorus availability in agricultural soils:A review, Sci Total Environ 612 (2018) 522-537 [40] M. Contin, L. Miho, E. Pellegrini, F. Gjoka, E. Shkurta, Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil, J. Soils Sediments 19 (12) (2019) 4052-4062 [41] Z.T. Shen, O. McMillan, F. Jin, A. Al-Tabbaa, Salisbury biochar did not affect the mobility or speciation of lead in Kaolin in a short-term laboratory study, J Hazard Mater 316 (2016) 214-220 [42] H. Li, W.Y. Shi, H.B. Shao, M.G. Shao, The remediation of the lead-polluted garden soil by natural zeolite, J Hazard Mater 169 (1-3) (2009) 1106-1111 [43] E.K. He, Y.X. Yang, Z.B. Xu, H. Qiu, F. Yang, W.J.G.M. Peijnenburg, W.H. Zhang, R.L. Qiu, S.Z. Wang, Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars, Sci Total Environ 673 (2019) 245-253 [44] I. Mohamed, G.S. Zhang, Z.G. Li, Y. Liu, F. Chen, K. Dai, Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application, Ecol. Eng. 84 (2015) 67-76 [45] C. Xu, H.X. Chen, Q. Xiang, H.H. Zhu, S. Wang, Q.H. Zhu, D.Y. Huang, Y.Z. Zhang, Effect of peanut shell and wheat straw biochar on the availability of Cd and Pb in a soil-rice (Oryza sativa L.) system, Environ. Sci. Pollut. Res. 25 (2) (2018) 1147-1156 [46] B. Seshadri, N.S. Bolan, H. Wijesekara, A. Kunhikrishnan, R. Thangarajan, F. Qi, R. Matheyarasu, C. Rocco, K. Mbene, R. Naidu, Phosphorus-cadmium interactions in paddy soils, Geoderma 270 (2016) 43-59 [47] A. Lateef, R. Nazir, N. Jamil, S. Alam, R. Shah, M.N. Khan, M. Saleem, Synthesis and characterization of zeolite based nano-composite:An environment friendly slow release fertilizer, Microporous Mesoporous Mater. 232 (2016) 174-183 [48] H.J. Su, Z.Q. Fang, P.E. Tsang, L.C. Zheng, W. Cheng, J.Z. Fang, D.Y. Zhao, Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles, J Hazard Mater 318 (2016) 533-540 [49] A. Gunes, A. Inal, M.B. Taskin, O. Sahin, E.C. Kaya, A. Atakol, Effect of phosphorus-enriched biochar and poultry manure on growth and mineral composition of lettuce (Lactuca sativaL. cv.) grown in alkaline soil, Soil Use Manag. 30 (2014) 182-188 [50] R. Pouliot, S. Hugron, L. Rochefort, S. Godbout, J.H. Palacios, E. Groeneveld, I. Jarry, Manure derived biochar can successfully replace phosphate rock amendment in peatland restoration, J Environ Manage 157 (2015) 118-126 [51] X.Y. Xu, X.D. Cao, L. Zhao, Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions:Role of mineral components in biochars, Chemosphere 92 (8) (2013) 955-961 [52] M.R. Maghsoodi, N. Najafi, A. Reyhanitabar, S. Oustan, Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers, Geoderma 379 (2020) 114644 [53] Q.Y. Guan, X.Z. Hu, D.Y. Wu, X. Shang, C. Ye, H.N. Kong, Phosphate removal in marine electrolytes by zeolite synthesized from coal fly ash, Fuel 88 (9) (2009) 1643-1649 [54] M. Hermassi, C. Valderrama, O. Font, N. Moreno, X. Querol, N.H. Batis, J.L. Cortina, Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer, Sci Total Environ 731 (2020) 139002 [55] A.K. Shahbaz, K. Lewińska, J. Iqbal, Q. Ali, Mahmood-Ur-Rahman, M. Iqbal, F. Abbas, H.M. Tauqeer, P.M.A. Ramzani, Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios, J Environ Manage 218 (2018) 256-270 [56] B.H. Wang, C.B. Chu, H.W. Wei, L.M. Zhang, Z. Ahmad, S.H. Wu, B. Xie, Ameliorative effects of silicon fertilizer on soil bacterial community and pakchoi (Brassica chinensis L.) grown on soil contaminated with multiple heavy metals, Environ. Pollut. 267 (2020) 115411. [57] B. Glaser, K. Wiedner, S. Seelig, H.P. Schmidt, H. Gerber, Biochar organic fertilizers from natural resources as substitute for mineral fertilizers, Agron. Sustain. Dev. 35 (2) (2015) 667-678 |
[1] | Xiaohong Zhou, Wenfeng Zhou, Wei Zhuang, Chenjie Zhu, Hanjie Ying, Hongman Zhang. Enhanced production of cytidine 5'-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 40-52. |
[2] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 151-161. |
[3] | Zhenfu Wang, Jie Gao, Qinghong Shi, Xiaoyan Dong, Yan Sun. Facile purification and immobilization of organophosphorus hydrolase on protein-inorganic hybrid phosphate nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 119-125. |
[4] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[5] | Zhen Wan, Youjun Lu. Numerical simulation of local and global mixing/segregation characteristics in a gas–solid fluidized bed [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 72-86. |
[6] | Nuochen Zhang, Yuande Dai, Linghao Feng, Biao Li. Study on environmentally friendly refrigerant R13I1/R152a as an alternative for R134a in automotive air conditioning system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 292-299. |
[7] | Wanqiao Liang, Jihuan Huang, Penny Xiao, Ranjeet Singh, Jining Guo, Leila Dehdari, Gang Kevin Li. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 335-342. |
[8] | Xiuxin Yu, Bing Liu, Yuanhui Shen, Donghui Zhang. Design and experiment of high-productivity two-stage vacuum pressure swing adsorption process for carbon capturing from dry flue gas [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 378-391. |
[9] | Jian Jian, Dexing Yang, Peng Liu, Kuiyi You, Weijie Sun, Hu Zhou, Zhengqiu Yuan, Qiuhong Ai, Hean Luo. Solvent-free partial oxidation of cyclohexane to KA oil over hydrotalcite-derived Cu-MgAlO mixed metal oxides [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 269-276. |
[10] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[11] | Hanxiao Du, Lixin Xie, Jie Liu, Shichang Xu. Concentration of mixed acid by electrodialysis for the intensification of absorption process in acrylic acid production [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 10-18. |
[12] | Yuan Li, Dongsheng Yang. Local component based principal component analysis model for multimode process monitoring [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 116-124. |
[13] | Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 104-111. |
[14] | Xueping Liu, Ping Xue, Feng Jia, Dongya Qiu, Keren Shi, Weiwei Zhang. Tailoring polymeric composite gel beads-encapsulated microorganism for efficient degradation of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 301-306. |
[15] | Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 136-145. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||