[1] R.S. Middleton, J.K. Eccles, The complex future of CO2 capture and storage:variable electricity generation and fossil fuel power, Appl. Energy 108(2013) 66-73.[2] United States, Energy Information Administration, Annual Energy Outlook 2016:with Projections to 2040, Washington D.C. August 2016.[3] Z.H. Yang, M. Jing, M.Y. Li, Z.X. Dong, P. Yan, Implication of geochemical simulation for CO2 storage using data of York Reservoir, Chin. J. Chem. Eng. 19(2011) 168-175.[4] I. Romao, E. Nduagu, J. Fagerlund, L.M. Gando-Ferreira, R. Zevenhoven, CO2 fixation using magnesium silicate minerals. Part 2:energy efficiency and integration with iron- and steelmaking, Energy 41(2012) 203-211.[5] H. Yan, J.Y. Zhang, Y.C. Zhao, C.G. Zheng, CO2 sequestration from flue gas by direct aqueous mineral carbonation of wollastonite, Science China Technol. Sci. 56(2013) 2219-2227.[6] E. Nduagu, J. Fagerlund, R. Zevenhoven, Contribution of iron to the energetics of CO2 sequestration in Mg-silicates-based rock, Energy Convers. Manag. 55(2012) 178-186.[7] A. Sanna, X.L. Wang, A. Lacinskae, M. Styles, T. Paulson, M.M. Maroto-Valer, Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration, Miner. Eng. 49(2013) 135-144.[8] M.M. Maroto-Valer, D.J. Fauth, M.E. Kuchta, Y. Zhang, J.M. Andresen, Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration, Fuel Process. Technol. 86(2005) 1627-1645.[9] X.L. Wang, M.M. Maroto-Valer, Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation, Fuel 90(2011) 1229-1237.[10] A. Sanna, A. Lacinska, M. Styles, M.M. Maroto-Valer, Silicate rock dissolution by ammonium bisulphate for pH swing mineral CO2 sequestration, Fuel Process. Technol. 120(2014) 128-135.[11] J. Fagerlund, E. Nduagu, I. Romao, R. Zevenhoven, CO2 fixation using magnesium silicate minerals part 1:process description and performance, Energy 41(2012) 184-191.[12] M. Slotte, I. Romao, R. Zevenhoven, Integration of a pilot-scale serpentinite carbonation process with an industrial lime kiln, Energy 62(2013) 142-149.[13] J. Fagerlund, E. Nduagu, I. Romao, R. Zevenhoven, A stepwise process for carbon dioxide sequestration using magnesium silicates, Front. Chem. Eng. China 4(2009) 133-141.[14] S. Teir, S. Eloneva, C.J. Fogelholm, R. Zevenhoven, Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production, Energy 32(2007) 528-539.[15] S. Eloneva, S. Teir, J. Salminen, C.J. Fogelholm, R. Zevenhoven, Fixation of CO2 by carbonating calcium derived from blast furnace slag, Energy 33(2008) 1461-1467.[16] E.E. Chang, C.H. Chen, Y.H. Chen, S.Y. Pan, P.C. Chiang, Performance evaluation for carbonation of steel-making slags in a slurry reactor, J. Hazard. Mater. 186(2011) 558-564.[17] W.J. Bao, H.T. Zhao, H.Q. Li, S.G. Li, W.G. Lin, Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure, J. CO2 Util. 17(2017) 125-136.[18] C. Cardenas-Escudero, V. Morales-Florez, R. Perez-Lopez, A. Santos, L. Esquivias, Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration, J. Hazard. Mater. 196(2011) 431-435.[19] C. Wang, H.R. Yue, C. Li, B. Liang, J.H. Zhu, H.P. Xie, Mineralization of CO2 using natural K-feldspar and industrial solid waste to produce soluble potassium, Ind. Eng. Chem. Res. 53(2014) 7971-7978.[20] H.P. Xie, H.R. Yue, J.H. Zhu, B. Liang, C. Li, Y.F. Wang, L.Z. Xiet, X.G. Zhou, Scientific and engineering progress in CO2 mineralization using industrial waste and natural minerals, Engineering 1(2015) 150-157.[21] W.J. Huijgen, G.J. Witkamp, R.N. Comans, Mineral CO2 sequestration by steel slag carbonation, Environ. Sci. Technol. 39(2005) 9676-9682.[22] E. Nduagu, J. Bergerson, R. Zevenhoven, Life cycle assessment of CO2 sequestration in magnesium silicate rock-a comparative study, Energy Convers. Manag. 55(2012) 116-126.[23] E. Nduagu, I. Romao, J. Fagerlund, R. Zevenhoven, Performance assessment of producing Mg(OH)2 for CO2 mineral sequestration, Appl. Energy 106(2013) 116-126.[24] U.S. Energy Information Administration, International Energy Outlook 2016, 2016.[25] K. Wang, L.N. Che, C.B. Ma, Y.M. Wei, The shadow price of CO2 emissions in China's iron and steel industry, Sci. Total Environ. 598(2017) 272-281.[26] C. Yilmaz, T. Turek, Modeling and simulation of the use of direct reduced iron in a blast furnace to reduce carbon dioxide emissions, J. Clean. Prod. 164(2017) 1519-1530.[27] A. Hasanbeigi, M. Arens, J.C.R. Cardenas, et al., Comparison of carbon dioxide emission intensity of steel production in China, Germany, Mexico, and the United States, Resour. Conserv. Recycl. 113(2016) 127-139.[28] G.Y. Ma, J.J. Cai, W.W. Zeng, H. Dong, Analytical research on waste heat recovery and utilization of China's iron & steel industry, Energy Procedia 14(2012) 1022-1028.[29] W.J. Duan, Q.B. Yu, K. Wang, Q. Qin, L.M. Hou, X. Yao, T.W. Wu, ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system, Energy Convers. Manag. 100(2015) 30-36.[30] H. Zhang, H. Wang, X. Zhu, Y.J. Qiu, K. Li, R. Chen, Q. Liao, A review of waste heat recovery technologies towards molten slag in steel industry, Appl. Energy 112(2013) 956-966.[31] Q.H. Li, A.H. Meng, Y.G. Zhang, Recovery Status and Prospect of Low-grade Waste Energy in China, 2009 International Conference on Sustainable Power Generation and Supply, Nanjing, China, 20091-6.[32] L. Chen, A. Feng, B. Li, C. Mao, X. Ren, N. Si, Q. Wu, J. Yang, J. Yuan, F. Zhang, X. Zhang, Y. Zhang, Chain grate bed waste heat recycling device for producing pellet in metallurgy industry, has wind box whose lower end is provided with wind outlet communicated with suction fan through pipe to extract recycled hot air, 2014(CN. Pat., 201463614-U).[33] J.X. Liu, Q.B. Yu, C.X. Dou, Experimental study on heat transfer characteristics of apparatus for recovering the waste heat of blast furnace slag, Adv. Mater. Res. 97-101(2010) 2343-2346.[34] A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, M.M. Maroto-Valer, A review of mineral carbonation technologies to sequester CO2, Chem. Soc. Rev. 43(2014) 8049-8080.[35] M. Dri, A. Sanna, M.M. Maroto-Valer, Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation, Fuel Process. Technol. 113(2013) 114-122.[36] I. Romao, M. Slotte, L.M. Gando-Ferreir, R. Zevenhoven, CO2 sequestration with magnesium silicates-exergetic performance assessment, Chem. Eng. Res. Des. 92(2014) 3072-3082.[37] L. Wang, W.Z. Liu, J.P. Hu, Q. Liu, H.R. Yue, B. Liang, G.Q. Zhang, D.M. Luo, H.P. Xie, C. Li, Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3, Chin. J. Chem. Eng. 26(2018) 583-592.[38] J.P. Hu, W.Z. Liu, L. Wang, Q. Liu, F. Chen, H.R. Yue, B. Liang, L. Lu, Y. Wang, G.Q. Zhang, C. Li, Indirect mineral carbonation of blast furnace slag with (NH4)2SO4 as a recyclable extractant, J. Energy Chem. 26(2017) 927-935.[39] Q. Liu, W.Z. Liu, J.P. Hu, L. Wang, J.Q. Gao, B. Liang, H.R. Yue, G.Q. Zhang, D.M. Luo, C. Li, Energy-efficienct mineral carbonation of blast furnace slag with high-addedvalue product, Master Thesis, Sichuan University, China, 2018(in Chinese).[40] I.C. Kemp, Pinch analysis and process integration:a user guide on process integration for the efficient use of energy, Inst. Chem. Eng. (2007) 72-79.[41] B. Linnhoff, H. Dunford, R. Smith, Heat integration of distillation columns into overall processes, Chem. Eng. Sci. 38(1983) 1175-1188.[42] V. Darde, Willy J.M. van Well, Erling H. Stenby, Kaj Thomsen, Modeling of carbon dioxide absorption by aqueous ammonia solutions using the extended UNIQUAC model, Ind. Eng. Chem. Res. 49(2010) 12663-12674.[43] W. Chongchen, W. Peng, Preparation and characterization of aluminum ammonium sulfate dodecahydrate, Lab. Sci. 16(2013) 4-6.[44] D.H. Xu, H.Q. Li, C.Y. Wang, W.J. Bao, Determination and modeling of the solubilities of NH4Al(SO4)2·12H2O in the NH4+-Al3+-H3O+-HSO4--SO42--H2O system at different H2SO4 molalities and temperatures, Fluid Phase Equilib. 403(2015) 129-135.[45] R.M. Dell, S.W. Weller, The thermal decomposition of nesquehonite MgCO3·3H2O and magnesium ammonium carbonate MgCO3·(NH4)2CO3·4H2O, Trans. Faraday Soc. 55(1959) 2203-2220.[46] X.L. Wang, M.M. Maroto-Valer, Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts, ChemSusChem 4(2011) 1291-1300.[47] B. Rumpf, G. Maurer, Solubility of ammonia in aqueous solutions of sodium sulfate and ammonium sulfate at temperatures from 333.15 K to 433.15 K and pressures up to 3 MPa, Ind. Eng. Chem. Res. 32(1993) 1780-1789.[48] Y.L. Gao, Q.H. Peng, Z.C. Li, Y.G. Li, Thermodynamics of ammonium sulfate-polyethylene glycol aqueous two-phase systems. Part 1. Experiment and correlation using extended uniquac equation, Fluid Phase Equilib. 63(1991) 157-171.[49] C. Charcosset, R. Kieffer, D. Mangin, F. Puel, Coupling between membrane processes and crystallization operations, Ind. Eng. Chem. Res. 49(2010) 5489-5495.[50] R. Zevenhoven, S. Teir, S. Eloneva, Heat optimisation of a staged gas-solid mineral carbonation process for long-term CO2 storage, Energy 33(2008) 362-370.[51] G.F. Brent, D.J. Allen, B.R. Eichler, J.G. Petrie, J.P. Mann, B.S. Haynes, Mineral carbonation asthe coreofanindustrial symbiosis for energy-intensive mineralsconversion, J. Ind. Ecol. 16(2012) 94-104.[52] H.P. Xie, Y.F. Wang, Y. Ju, B. Liang, J.H. Zhu, R. Zhang, L.Z. Xie, T. Liu, X.G. Zhou, H.M. Zeng, C. Li, H.F. Lu, Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar, Chin. Sci. Bull. 58(2013) 128-132.[53] Y. Zhang, J.M. Gao, M.Y. He, D.D. Feng, Q. Du, S.H. Wu, Simulation optimization of a new ammonia-based carbon capture process coupled with low-temperature waste heat utilization, Energy Fuel 31(2017) 4219-4225.[54] J. Lei, H.Y. Yue, H. Tang, B. Liang, Heat integration and optimization of hydrogen production for a 1 kW low-temperature proton exchange membrane fuel cell, Chem. Eng. Sci. 123(2015) 81-91.[55] L. Chen, Y.K. Zhang, A.X. Feng, Z.Y. Xu, B.Q. Li, H. Shen, Design of grate bed heat recovery unit and simulation analysis, Key Eng. Mater. 464(2011) 366-369.[56] B. Zhao, F.Z. Liu, Z. Cui, C.J. Liu, H.R. Yue, S.Y. Tang, Y.Y. Liu, H.F. Lu, B. Liang, Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant:process improvement, Appl. Energy 185(2017) 362-375. |