[1] E. Koivisto, R. Erlund, M. Fagerholm, R. Zevenhoven, Extraction of magnesium from four Finnish magnesium silicate rocks for CO2 mineralisation-part 1:thermal solid/solid extraction, Hydrometallurgy 166(2016) 222-228. [2] T. Hosseini, M. Daneshpayeh, C. Selomulya, N. Haque, L. Zhang, Chemical kinetic modeling and parameter sensitivity analysis for the carbonation of Ca2+ and Mg2+ under ambient conditions, Hydrometallurgy 167(2017) 141-152. [3] W.J.J. Huijgen, R.N.J. Comans, Mineral CO2 sequestration by steel slag carbonation, Environ. Sci. Technol. 39(24) (2005) 9676-9682. [4] D.N. Huntzinger, J.S. Gierke, S.K. Kawatra, T.C. Eisele, L.L. Sutter, Carbon dioxide sequestration in cement kiln dust through mineral carbonation, Environ. Sci. Technol. 43(6) (2009) 1986-1992. [5] F.K. Crundwell, The mechanism of dissolution of forsterite, olivine and minerals of the orthosilicate group, Hydrometallurgy 150(2014) 68-82. [6] T. Hosseini, C. Selomulya, N. Haque, L. Zhang, Investigating the effect of the Mg2+/Ca2+ molar ratio on the carbonate speciation during the mild mineral carbonation process at atmospheric pressure, Energy Fuel 29(11) (2015) 7483-7496. [7] W.J.J. Huijgen, G.J. Ruijg, R.N.J. Comans, G.J. Witkamp, Energy consumption and net CO2 sequestration of aqueous mineral carbonation, Ind. Eng. Chem. Res. 45(26) (2006) 9184-9194. [8] U.S. Geological Survey, Mineral commodity summaries 2018, U.S. Geological Survey (2018) 83-83. [9] R. Nicolle, Steelmaking plants:towards lower energy consumption and lower CO2 production using more electricity, Revue de Métallurgie 107(2010) 377-385. [10] J.L. Tian, Q. Zhang, Resource utilization of steel slag and environmental pollution treatment, Resource Recycling 1(2013) 55-57. [11] V. Ján, L. Michal, J. Štefan, Š. Vladimír, H. Slavomír, Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction, Hydrometallurgy 129-130(2012) 67-73. [12] E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori, Global strategies and potentials to curb CO2 emissions in cement industry, J. Clean. Prod. 51(2013) 142-161. [13] U.B. Alicja, E. Mokrzycki, CO2 mineral sequestration with the use of ground granulated blast furnace slag, Gospodarka Surowcami Mineralnymi 33(2017) 111-224. [14] S. Eloneva, A. Said, C.J. Fogelholm, R. Zevenhoven, Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate, Appl. Energy 90(2012) 329-334. [15] S.Y. Pan, J.S. Kinjal, Y.H. Chen, M.H. Wang, P.C. Chiang, Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy, ACS Sustain. Chem. Eng. 5(2017) 6429-6437. [16] S. Lee, J.W. Kim, S. Chae, J.H. Bang, S.W. Lee, CO2 sequestration technology through mineral carbonation:an extraction and carbonation of blast slag, J. CO2 Utilization 16(2016) 336-345. [17] J.H. Bang, S.W. Lee, C.W. Jeon, S.W. Park, K.S. Song, W.J. Jo, S.C. Chae, Leaching of metal ions from blast furnace slag by using aqua Regia for CO2 mineralization, Energies 9(2016) 996. [18] J.P. Hu, W.Z. Liu, L. Wang, Q. Liu, F. Chen, H.R. Yue, B. Liang, L. Lü, Y. Wang, G.Q. Zhang, C. Li, Indirect mineral carbonation of blast furnace slag with (NH4)2SO4 as a recyclable extractant, J. Energy Chem. 26(2017) 927-935. [19] Q. Liu, W.Z. Liu, L. Lü, R.H. Li, B. Liang, H.R. Yue, S.W. Tang, C. Li, Study on reactions of gaseous P2O5 with Ca3(PO4)2 and SiO2 during a rotary kiln process for phosphoric acid production, Chin. J. Chem. Eng. 26(2018) 795-805. [20] G.R. Chu, C. Li, W.Z. Liu, G.Q. Zhang, H.R. Yue, B. Liang, Y. Wang, D.M. Luo, Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process, Energy 166(2019) 1314-1322. [21] L. Wang, W.Z. Liu, J.P. Hu, Q. Liu, H.R. Yue, B. Liang, G.Q. Zhang, D.M. Luo, H.P. Xie, C. Li, Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3, Chin. J. Chem. Eng. 26(2018) 583-592. [22] R.H. Matjie, R. Engelbrecht, Selective removal of dissolved silicon and aluminium ions from gas liquor by hydrometallurgical methods, Hydrometallurgy 85(2007) 172-182. [23] L.G. Dyer, W.R. Richmond, P.D. Fawell, Simulation of iron oxide/silica precipitation in the paragoethite process for the removal of iron from acidic zinc leach solutions, Hydrometallurgy 119-120(2012) 47-54. [24] H.X. Lai, L.Q. Huang, C.H. Lu, M. Fang, W.H. Ma, P.F. Xing, J.T. Li, X.T. Luo, Leaching behavior of impurities in Ca-alloyed metallurgical grade silicon, Hydrometallurgy 156(2015) 173-181. [25] H. Lefler, Y. Zhang, Z.Z. Fang, M. Free, Z. Huang, Removal of silicon from highly acidic HCl medium to produce purified TiO2, Hydrometallurgy 173(2017) 218-223. [26] F.S. Xi, S.Y. Li, W.H. Ma, Z. Ding, Y. Lei, Z.J. Chen, K.X. Wei, K.Q. Xie, J.J. Wu, Removal of impurities from metallurgical grade silicon with metal assisted chemical leaching, Hydrometallurgy 178(2018) 250-255. [27] W.Z. Liu, S. Yin, D.M. Luo, G.Q. Zhang, H.R. Yue, B. Liang, L.M. Wang, C. Li, Optimising the recovery of high-value-added ammonium alum during mineral carbonation of blast furnace slag, J. Alloys Compd. 774(2019) 1151-1159. [28] Z.N. Tang, Production and Environmental Control of Titanium Pigment, first ed. Chemical Industry Publishing House, Beijing, 2000. [29] X.F. Zhu, S.L. Zheng, Y. Zhang, Z.G.Z. Fang, M. Zhang, P. Sun, Q. Li, Y. Zhang, P. Li, W. Jin, Potentially more ecofriendly chemical pathway for production of highpurity TiO2 from titanium slag, ACS Sustain. Chem. Eng. 7(5) (2019) 4821-4830. [30] R. Kiyoura, K. Urano, Mechanism, kinetics, and equilibrium of thermal decomposition of ammonium sulfate, Ind. Eng. Chem. Process. Des. Dev. 9(4) (1970) 489-494. [31] M. Jariwala, J. Crawford, D.J. Lecaptain, In situ Raman spectroscopic analysis of the regeneration of ammonium hydrogen sulfate from ammonium sulfate, Ind. Eng. Chem. Res. 46(14) (2007) 4900-4905. [32] W.Z. Liu, L. Lü, H.R. Yue, B. Liang, C. Li, Combined production of synthetic rutile in the sulfate TiO2 process, J. Alloys Compd. 705(2017) 572-580. [33] Z.N. Lou, Y. Xiong, X.D. Feng, W.J. Shan, Y.C. Zhai, Study on the roasting and leaching behavior of high-sulfur bauxite using ammonium bisulfate, Hydrometallurgy 165(2016) 306-311. [34] F.Q. Meng, W.Z. Liu, G.R. Chu, H.R. Yue, B. Liang, L.M. Wang, C. Li, Phase diagrams of (NH4)2SO4-Al2(SO4)3-H2O ternary system:effect of sulfuric acid and its application in recovery of aluminum from coal fly ash, J. Chem. Eng. Data 64(2) (2019) 557-566. [35] W.Z. Liu, F.Q. Meng, G.R. Chu, L.M. Wang, H.R. Yue, B. Liang, C. Li, Phase diagrams of the MgSO4-Al2(SO4)3-(NH4)2SO4-H2O system at 25 and 55℃ and their application in mineral carbonation, Fluid Phase Equilib. 473(2018) 226-235. [36] C.C. Wang, P. Wang, Preparation and Characterization of Aluminum Ammonium Sulfate Dodecahydrate, Laboratory Science, http://en.cnki.com.cn/Article_en/CJFDTotal-YSKT201306003.htm2013. [37] R. Liu, T.Y. Xue, J. Song, Y. Wang, T. Qi, J.K. Qu, A.L. Du, Removal of silicon in acid leaching and flocculation processes during zirconium oxychloride octahydrate production, Ceram. Int. 40(2014) 8801-8808. [38] R.R. Xu, W.Q. Pang, J.H. Yu, Q.S. Huo, J.S. Chen, Chemistry-Zeolites and Porous Materials, second ed Sciences Editions, Science Press, Beijing, 2004. [39] S.H. Liu, S. Jaenicke, G.K. Chuah, Hydrous zirconia as a selective catalyst for the Meerwein-Ponndorf-Verley reduction of cinnamaldehyde, J. Catal. 206(2002) 321-330. [40] S.F. Weng, Fourier Transform Infrared Spectroscopy Analysis, second ed. Chemical Industry Press, Beijing, 2010. http://xueshu.baidu.com/usercenter/paper/show?paperid=2d7c95c22ba08a284ac8354478efbfe4&site=xueshu_se&sc_from=scu. |