Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (9): 2425-2437.DOI: 10.1016/j.cjche.2020.05.016
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Muhammad A. Imran1, Tiantian Li1, Xuemei Wu1, Xiaoming Yan1, Abdul-Sammed Khan2, Gaohong He1
Received:
2019-10-06
Revised:
2020-05-12
Online:
2020-10-21
Published:
2020-09-28
Contact:
Gaohong He
Supported by:
Muhammad A. Imran1, Tiantian Li1, Xuemei Wu1, Xiaoming Yan1, Abdul-Sammed Khan2, Gaohong He1
通讯作者:
Gaohong He
基金资助:
Muhammad A. Imran, Tiantian Li, Xuemei Wu, Xiaoming Yan, Abdul-Sammed Khan, Gaohong He. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2425-2437.
Muhammad A. Imran, Tiantian Li, Xuemei Wu, Xiaoming Yan, Abdul-Sammed Khan, Gaohong He. Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) composite electrolyte membranes for high temperature proton exchange membrane fuel cells usage[J]. 中国化学工程学报, 2020, 28(9): 2425-2437.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.05.016
[1] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B.G. Pollet, Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell:evaluation of polymer binders in catalyst layer, Int. J. Hydrog. Energy 38(26) (2013) 11370-11378. [2] H. Chen, S. Wang, J.S. Li, F.X. Liu, X. Tian, X. Wang, T.J. Mao, J.M. Xu, Z. Wang, Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications, J. Taiwan Inst. Chem. Eng. 95(2018) 185-194. [3] A. Chandan, M. Hattenberger, A. El-kharouf, S. Du, A. Dhir, V. Self, B.G. Pollet, A. Ingram, W. Bujalski, High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-a review, J. Power Sources 231(2013) 264-278. [4] Q.F. Li, J.O. Jensen, R.F. Savinell, J.B. Niels, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci. 34(5) (2009) 449-477. [5] I. Profatilova, P.A. Jacques, S. Escribano, Evaluation of parameters accelerating the aging of PEMFCs operating under reformate containing carbon monoxide, J. Electrochem. Soc. 165(6) (2018) F3251-F3260. [6] Y.Y. Shao, G.P. Yin, Z.B. Wang, Y.Z. Gao, Proton exchange membrane fuel cell from low temperature to high temperature:Material challenges, J. Power Sources 167(2) (2007) 235-242. [7] T. Higashihara, K. Matsumoto, M. Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells, Polymer 50(23) (2009) 5341-5357. [8] R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Rosli, E.H. Majlan, M.A. Haque, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrog. Energy 42(14) (2017) 9293-9314. [9] A. Kraytsberg, Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells, Energy Fuel 28(12) (2014) 7303-7330. [10] J. Miyake, M. Kusakabe, A. Tsutsumida, K. Miyatake, Remarkable reinforcement effect in sulfonated aromatic polymers as fuel cell membrane, ACS Applied Energy Materials 1(3) (2018) 1233-1238. [11] G. Alberti, R. Narducci, M. Sganappa, Effects of hydrothermal/thermal treatments on the water-uptake of Nafion membranes and relations with changes of conformation, counter-elastic force and tensile modulus of the matrix, J. Power Sources 178(2) (2008) 575-583. [12] R.P. Pandey, A.K. Thakur, V.K. Shahi, Sulfonated polyimide/acid-functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties, ACS Appl. Mater. Interfaces 6(19) (2014) 16993-17002. [13] B.J. Yao, X.L. Yan, Y. Ding, Z.J. Lu, D.X. Dong, H. Ishida, M. Litt, L. Zhu, Synthesis of sulfonic acid-containing polybenzoxazine for proton exchange membrane in direct methanol fuel cells, Macromolecules 47(3) (2014) 1039-1045. [14] K. Divya, M.S. Sri Abirami Saraswathi, D. Rana, S. Alwarappan, A. Nagendran, Custom-made sulfonated poly (ether sulfone) nanocomposite proton exchange membranes using exfoliated molybdenum disulfide nanosheets for DMFC applications, Polymer 147(2018) 48-55. [15] Y.B. Cai, Z.Y. Yue, S.A. Xu, A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere, J. Appl. Polym. Sci. 134(25) (2017) 134. [16] N. Cao, C.F. Zhou, Y. Wang, H. Ju, D.Y. Tan, J. Li, Synthesis and characterization of sulfonated graphene oxide reinforced sulfonated poly(ether ether ketone) (SPEEK) composites for proton exchange membrane materials, Materials 11(4) (2018) 516. [17] L.Y. Li, B.C. Yu, C.M. Shih, S.J. Lue, Polybenzimidazole membranes for direct methanol fuel cell:acid-doped or alkali-doped? J. Power Sources 287(2015) 386-395. [18] H. Hou, M.L. Di Vona, P. Knauth, Building bridges:crosslinking of sulfonated aromatic polymers-a review, J. Membr. Sci. 423(2012) 113-127. [19] A.L. Gulledge, B. Gu, B.C. Benicewicz, A new sequence isomer of ABpolybenzimidazole for high-temperature PEM fuel cells, J. Polym. Sci. A Polym. Chem. 50(2) (2012) 306-313. [20] N.N. Krishnan, H.J. Lee, H.J. Kim, J.Y. Kim, I. Hwang, J.H. Jang, E.A. Cho, S.K. Kim, D. Henkensmeier, S.A. Hong, T.H. Lim, Sulfonated poly(ether sulfone)/sulfonated polybenzimidazole blend membrane for fuel cell applications, Eur. Polym. J. 46(7) (2010) 1633-1641. [21] D.X. Zhang, J. Zou, Y.M. Zhang, M. Zhang, D.D. Dang, Research of Novel high-temperature proton exchange composite membrane, Applied Mechanics and Materials. Trans Tech Publ. 2(2014) 1677. [22] L. Wang, J.P. Ni, D. Liu, C.L. Gong, L. Wang, Effects of branching structures on the properties of phosphoric acid-doped polybenzimidazole as a membrane material for high-temperature proton exchange membrane fuel cells, Int. J. Hydrog. Energy 43(34) (2018) 16694-16703. [23] P. Staiti, F. Lufrano, A.S. Aricò, E. Passalacqua, V. Antonucci, Sulfonated polybenzimidazole membranes-preparation and physico-chemical characterization, J. Membr. Sci. 188(1) (2001) 71-78. [24] J.M. Bae, I. Honma, M. Murata, T. Yamamoto, M. Rikukawa, N. Ogata, Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics 147(1-2) (2002) 189-194. [25] J.A. Asensio, E.M. Sánchez, P. Gómez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest, Chem. Soc. Rev. 39(8) (2010) 3210-3239. [26] N. Tan, G.Y. Xiao, D.Y. Yan, G.M. Sun, reparation and properties of polybenzimidazoles with sulfophenylsulfonyl pendant groups for proton exchange membranes, J. Membr. Sci. 353(1) (2010) 51-59. [27] G. Wang, G.Y. Xiao, D.Y. Yan, Synthesis and properties of soluble sulfonated polybenzimidazoles derived from asymmetric dicarboxylic acid monomers with sulfonate group as proton exchange membrane, J. Membr. Sci. 369(1) (2011) 388-396. [28] H.J. Xu, K.C. Chen, X.X. Guo, J.H. Fang, J. Yin, Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application, Polymer 48(19) (2007) 5556-5564. [29] Q. Li, R. He, J.O. Jensen, N.J. Bjerrum, PBI-based polymer membranes for high temperature fuel cells-preparation, characterization and fuel cell demonstration, Fuel Cells 4(3) (2004) 147-159. [30] P. Mustarelli, E. Quartarone, S. Grandi, A. Carollo, A. Magistris, Polybenzimidazolebased membranes as a real alternative to nafion for fuel cells operating at low temperature, Adv. Mater. 20(7) (2008) 1339-1343. [31] M.N.A. Mohd Norddin, A.F. Ismail, D. Rana, T. Matsuura, A. Mustafa, A. TabeMohammadi, Characterization and performance of proton exchange membranes for direct methanol fuel cell:blending of sulfonated poly (ether ether ketone) with charged surface modifying macromolecule, J. Membr. Sci. 323(2) (2008) 404-413. [32] L.J. Ghil, C.K. Kim, N.R. Park, H.W. Rhee, Characterization of sulfonated poly(ether ether ketone)/silane nanocomposite membrane for high temperature polymer electrolyte membrane fuel cells, J. Nanosci. Nanotechnol. 11(1) (2011) 331-334. [33] C.H. Lee, H.B. Park, C.H. Park, S.Y. Lee, J.Y. Kim, James E. Mc Grath, Y.M. Lee, Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion, J. Power Sources 195(5) (2010) 1325-1332. [34] M. Choi, C. Han, I.T. Kim, J.C. An, J.J. Lee, H.K. Lee, J. Shim, Electrochemical characterization of Pt-Ru-Pd catalysts for methanol oxidation reaction in direct methanol fuel cells, J. Nanosci. Nanotechnol. 11(1) (2011) 838-841. [35] J.B. Ballengee, P.N. Pintauro, Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats, J. Membr. Sci. 442(2013) 187-195. [36] W. Qian, Y.M. Shang, M. Fang, S.B. Wang, X.F. Xie, J.H. Wang, W.X. Wang, J.Y. Du, Y. W. Wang, Z.Q. Mao, Sulfonated polybenzimidazole/zirconium phosphate composite membranes for high temperature applications, Int. J. Hydrog. Energy 37(17) (2012) 12919-12924. [37] Y. Devrim, H. Devrim, I. Eroglu, Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrog. Energy 41(23) (2016) 10044-10052. [38] H. Ahmadizadegan, Effect of adding nanoclay (Cloisite-30B) on the proton conductivity of sulfonated polybenzimidazole, Nano Res. 2(1) (2017) 96-108. [39] V. Dusastre, Materials for Sustainable Energy:A Collection of Peer-reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011. [40] R. Kannan, B.A. Kakade, V.K. Pillai, Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes, Angew. Chem. Int. Ed. 47(14) (2008) 2653-2656. [41] H. Wu, Y. Cao, X.H. Shen, Z. Li, T.X. Zhong, Y. Jiang, Preparation and performance of different amino acids functionalized titania-embedded sulfonated poly (ether ether ketone) hybrid membranes for direct methanol fuel cells, J. Membr. Sci. 463(2014) 134-144. [42] P. Salarizadeh, M. Javanbakht, S. Pourmahdian, Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites, RSC Adv. 7(14) (2017) 8303-8313. [43] S.S. Araya, F. Zhou, V. Liso, S.L. Sahlin, J.R. Vang, S. Thomas, X. Gao, C. Jeppesen, S.K. Kær, A comprehensive review of PBI-based high temperature PEM fuel cells, Int. J. Hydrog. Energy 41(46) (2016) 21310-21344. [44] M. Amjadi, S. Rowshanzamir, S.J. Peighambardoust, M.G. Hosseini, M.H. Eikani, Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells, Int. J. Hydrog. Energy 35(17) (2010) 9252-9260. [45] N.T.L.A. Thanh, Green, Functionalisation of nanoparticles for biomedical applications, Nano Today 5(3) (2010) 213-230. [46] Q.Y. Liu, W.F. Wang, Y.L. Wang, Z.M. Shan, M.S. Wang, J.K. Tang, Diversity of lanthanide (III)-organic extended frameworks with a 4,8-disulfonyl-2,6-naphthalenedicarboxylic acid ligand:Syntheses, structures, and magnetic and luminescent properties, Inorg. Chem. 51(4) (2012) 2381-2392. [47] S.B. Qing, W. Huang, D.Y. Yan, Synthesis and characterization of thermally stable sulfonated polybenzimidazoles obtained from 3,3'-disulfonyl-4,4'-dicarboxyldiphenylsulfone, J. Polym. Sci. A Polym. Chem. 43(19) (2005) 4363-4372. [48] N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications, J. Am. Chem. Soc. 128(5) (2006) 1762-1769. [49] P.X. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, S. Kaliaguine, Sulfonated poly (aryl ether ketone) s containing the hexafluoroisopropylidene diphenyl moiety prepared by direct copolymerization, as proton exchange membranes for fuel cell application, Macromolecules 37(21) (2004) 7960-7967. [50] S. Maity, S. Singha, T. Jana, Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica, Polymer 66(2015) 76-85. [51] X. Qiu, H.Y. Hu Mitsuru Ueda, Y.Q. Sui, X. Zhang, L.J. Wang, Poly (2,5-benzimidazole)-grafted graphene oxide as an effective proton conductor for construction of nanocomposite proton exchange membrane, ACS Appl. Mater. Interfaces 9(38) (2017) 33049-33058. [52] S.B. Qing, W. Huang, D.Y. Yan, Synthesis and properties of soluble sulfonated polybenzimidazoles, React. Funct. Polym. 66(2) (2006) 219-227. [53] A.M. Cevallos, J. Herrera, I. López-Villaseñor, R. Hernández, Differential effects of two widely used solvents, DMSO and ethanol, on the growth and recovery of Trypanosoma cruzi Epimastigotes in culture, The Korean Journal of Parasitology 55(1) (2017) 81. [54] X. Glipa, M. El Haddad, D.J. Jones, J. Rozière, Synthesis and characterisation of sulfonated polybenzimidazole:A highly conducting proton exchange polymer, Solid State Ionics 97(1-4) (1997) 323-331. [55] V. Deimede, G.A. Voyiatzis, J.K. Kallitsis, L. Qingfeng, N.J. Bjerrum, Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications, Macromolecules 33(20) (2000) 7609-7617. [56] H.W. Thompson, L.J. Bellamy, The infra-red spectra of complex molecules. Methuen and Co., London, price 35s, Spectrochim. Acta 7(1956) 250-250. [57] R.P. Bagwe, L.R. Hilliard, W.H. Tan, Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding, Langmuir 22(9) (2006) 4357-4362. [58] S. Ghosh, S. Maity, T. Jana, Polybenzimidazole/silica nanocomposites:organic-inorganic hybrid membranes for PEM fuel cell, J. Mater. Chem. 21(38) (2011) 14897-14906. [59] A. Alabi, A. AlHajaj, L. Cseri, G. Szekely, P. Budd, L.D. Zou, Review of nanomaterialsassisted ion exchange membranes for electromembrane desalination. npj, Clean Water 1(1) (2018) 1-22. [60] R. Vinodh, M. Purushothaman, D. Sangeetha, Novel quaternized polysulfone/ZrO2 composite membranes for solid alkaline fuel cell applications, Int. J. Hydrog. Energy 36(12) (2011) 7291-7302. [61] M. Kim, L. Lee, Y. Jung, S. Kim, Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 fillers, J. Nanosci. Nanotechnol. 13(12) (2013) 7865-7869. [62] S.G. Feng, Y.M. Shang, G.S. Liu, W.Q. Dong, X.F. Xie, J.M. Xu, V.K. Mathur, Novel modification method to prepare crosslinked sulfonated poly (ether ether ketone)/silica hybrid membranes for fuel cells, J. Power Sources 195(19) (2010) 6450-6458. [63] G.H. Hsiue, Y.L. Liu, J. Tsiao, Phosphorus-containing epoxy resins for flame retardancy V:synergistic effect of phosphorus-silicon on flame retardancy, J. Appl. Polym. Sci. 78(1) (2000) 1-7. [64] H. Toiserkani, Fabrication and characterization of poly(benzimidazole-amide)/functionalized titania nanocomposites containing phthalimide and benzimidazole pendent groups, Colloid Polym. Sci. 293(10) (2015) 2911-2920. [65] A. Aslan, A. Bozkurt, Nanocomposite polymer electrolyte membranes based on poly (vinylphosphonic acid)/TiO2 nanoparticles, J. Mater. Res. 27(24) (2012) 3090-3095. [66] N. Tan, Y. Chen, G.Y. Xiao, D.Y. Yan, Synthesis and properties of sulfonated polybenzothiazoles with benzimidazole moieties as proton exchange membranes, J. Membr. Sci. 356(1-2) (2010) 70-77. [67] N. Tan, G.Y. Xiao, D.Y. Yan, G.M. Sun, Preparation and properties of polybenzimidazoles with sulfophenylsulfonyl pendant groups for proton exchange membranes, J. Membr. Sci. 353(1-2) (2010) 51-59. [68] P. Salarizadeh, M.n Javanbakht, M. Abdollahi, L. Naji, Preparation, characterization and properties of proton exchange nanocomposite membranes based on poly (vinyl alcohol) and poly(sulfonic acid)-grafted silica nanoparticles, Int. J. Hydrog. Energy 38(13) (2013) 5473-5479. [69] S. Sasikala, S. Meenakshi, S.D. Bhat, A.K. Sahu, Functionalized Bentonite clay-sPEEK based composite membranes for direct methanol fuel cells, Electrochim. Acta 135(2014) 232-241. [70] M. Moradi, A. Moheb, M. Javanbakht, K. Hooshyari, Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-Fe2TiO5 nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC), Int. J. Hydrog. Energy 41(4) (2016) 2896-2910. [71] D.Y. Chen, S.J. Wang, M. Xiao, D.M. Han, Y.Z. Meng, Sulfonated poly (fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery, J. Power Sources 195(22) (2010) 7701-7708. [72] M. Vinothkannan, R. Kannan, A.R. Kim, G.G. Kumar, K.S. Nahm, D.J. Yoo, Facile enhancement in proton conductivity of sulfonated poly (ether ether ketone) using functionalized graphene oxide-synthesis, characterization, and application towards proton exchange membrane fuel cells, Colloid Polym. Sci. 294(7) (2016) 1197-1207. [73] D.C. Lee, H.N. Yang, S.H. Park, W.J. Kim, Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell, J. Membr. Sci. 452(2014) 20-28. [74] P. Muthuraja, S. Prakash, V.M. Shanmugam, P. Manisankar, Stable nanofibrous poly (aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells, Solid State Ionics 317(2018) 201-209. [75] H.T. Pu, L. Wang, H.Y. Pan, D.C. Wan, Synthesis and characterization of fluorinecontaining polybenzimidazole for proton conducting membranes in fuel cells, J. Polym. Sci. A Polym. Chem. 48(10) (2010) 2115-2122. [76] Q.F. Li, H.C. Rudbeck, A. Chromik, J.O. Jensen, C. Pan, T. Steenberg, M. Calverley, N.J. Bjerrum, J. Kerres, Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes, J. Membr. Sci. 347(1-2) (2010) 260-270. [77] J. Lobato, P. Cañizares, A.R. Manuel, D. Úbeda, F. JavierPinar, A novel titanium PBIbased composite membrane for high temperature PEMFCs, J. Membr. Sci. 369(1-2) (2011) 105-111. [78] J.B. Miao, L.Z. Yao, Z.J. Yang, J.F. Pan, J.S. Qian, T.W. Xu, Sulfonated poly (2,6-dimethyl-1,4-phenyleneoxide)/nano silica hybrid membranes for alkali recovery via diffusion dialysis, Sep. Purif. Technol. 141(2015) 307-313. [79] P. Salarizadeh, M. Javanbakht, S. Pourmahdian, Fabrication and physico-chemical properties of iron titanate nanoparticles based sulfonated poly (ether ether ketone) membrane for proton exchange membrane fuel cell application, Solid State Ionics 281(2015) 12-20. [80] J. Huang, K.S. Zhang, K. Wang, Z.L. Xie, Bradley Ladewig, H.T. Wang, Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties, J. Membr. Sci. 423(2012) 362-370. [81] E. Vijayakumar, A. Subramania, Z.F. Fei, Paul J. Dyson, High-performance dye-sensitized solar cell based on an electrospun poly (vinylidene fluoride-cohexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte, RSC Adv. 5(64) (2015) 52026-52032. [82] W. Dai, H.J. Wang, X.Z. Yuan, J.M. Jonathan, D.J. Yang, J.L. Qiao, J.X. Ma, A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells, Int. J. Hydrog. Energy 34(23) (2009) 9461-9478. [83] Y.H. Cai, J. Hu, H.P. Ma, B.L. Yi, H.M. Zhang, Effects of hydrophilic/hydrophobic properties on the water behavior in the micro-channels of a proton exchange membrane fuel cell, J. Power Sources 161(2) (2006) 843-848. [84] G.J.M. Janssen, M.L.J. Overvelde, Water transport in the proton-exchange-membrane fuel cell:measurements of the effective drag coefficient, J. Power Sources 101(1) (2001) 117-125. [85] Y.F. Li, G.W. He, S.F. Wang, S.N. Yu, F.S. Pan, H. Wu, Z.Y. Jiang, Recent advances in the fabrication of advanced composite membranes, J. Mater. Chem. A 1(35) (2013) 10058-10077. [86] N. Awang, A.F. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M.H.D. Othman, M.A. Rahman, Functionalization of polymeric materials as a high performance membrane for direct methanol fuel cell:a review, React. Funct. Polym. 86(2015) 248-258. [87] H.W. Zhang, P.K. Shen, Recent development of polymer electrolyte membranes for fuel cells, Chem. Rev. 112(5) (2012) 2780-2832. [88] Y. Özdemir, N. Üregen, Y. Devrim, Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells, Int. J. Hydrog. Energy 42(4) (2017) 2648-2657. [89] H. Becker, L. Nilausen, C.D. Aili, J.O. Jensen, Q.F. Li, Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes, Electrochem. Commun. 82(2017) 21-24. [90] M.N. Tsampas, A. Pikos, S. Brosda, A. Katsaounis, C.G. Vayenas, The effect of membrane thickness on the conductivity of Nafion, Electrochim. Acta 51(13) (2006) 2743-2755. [91] F. Seland, T. Berning, B. Børresen, R. Tunold, Improving the performance of hightemperature PEM fuel cells based on PBI electrolyte, J. Power Sources 160(1) (2006) 27-36. [92] P.P. Chen, L. Hao, W.J. Wu, Y.F. Li, J.T. Wang, Polymer-inorganic hybrid proton conductive membranes:effect of the interfacial transfer pathways, Electrochim. Acta 212(2016) 426-439. [93] F.J. Pinar, P. Cañizares, M.A. Rodrigo, D. Ubeda, J. Lobato, Titanium composite PBIbased membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount, RSC Adv. 2(4) (2012) 1547-1556. [94] Y.L. Li, Q.T. Nguyen, P. Schaetzel, C. Lixon-Buquet, L. Colasse, V. Ratieuville, S. Marais, Proton exchange membranes from sulfonated polyetheretherketone and sulfonated polyethersulfone-cardo blends:conductivity, water sorption and permeation properties, Electrochim. Acta 111(2013) 419-433. [95] R.P. Pandey, V.K. Shahi, Sulphonated imidized graphene oxide (SIGO) based polymer electrolyte membrane for improved water retention, stability and proton conductivity, J. Power Sources 299(2015) 104-113. [96] M.L. Einsla, Y.S. Kim, M. Hawley, H.-S. Lee, J.E. McGrath, B. Liu, M.D. Guiver, B.S. Pivovar, Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity, Chem. Mater. 20(17) (2008) 5636-5642. [97] C.Y. Huang, J.S. Lin, W.H. Pan, C.M. Shih, Y.L. Liu, S.J. Jessie Lue, Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes, J. Power Sources 303(2016) 267-277. [98] K.H. Lee, D.H. Cho, Y.M. Kim, S.J. Moon, J.G. Seong, D.W. Shin, J.-Y. Sohn, J.F. Kim, Y. M. Lee, Highly conductive and durable poly (arylene ether sulfone) anion exchange membrane with end-group cross-linking, Energy Environ. Sci. 10(1) (2017) 275-285. [99] D.W. Shin, M.D. Guiver, Y.M. Lee, Hydrocarbon-based polymer electrolyte membranes:importance of morphology on ion transport and membrane stability, Chem. Rev. 117(6) (2017) 4759-4805. [100] C.H. Park, S.Y. Lee, D.S. Hwang, D.W. Shin, D.H. Cho, K.H. Lee, T.W. Kim, T.W. Kim, M. Lee, D.S. Kim, C.M. Doherty, A.W. Thornton, A.J. Hill, M.D. Guiver, Y.M. Lee, Nanocrack-regulated self-humidifying membranes, Nature 532(7600) (2016) 480-483. [101] P. Muthuraja, S. Prakash, V.M. Shanmugam, S. Radhakrsihnan, P. Manisankar, Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells:synthesis and characterizations, Int. J. Hydrog. Energy 43(9) (2018) 4763-4772. [102] Y.N.C. Suryani, J.Y. Lai, Y.L. Liu, Polybenzimidazole (PBI)-functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells, J. Membr. Sci. 403(2012) 1-7. [103] D. Plackett, A. Siu, Q.F. Li, C. Pan, J.O. Jensen, S.F. Nielsen, A.A. Permyakova, N.J. Bjerrum, High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells, J. Membr. Sci. 383(1-2) (2011) 78-87. [104] K. Hooshyari, M. Javanbakht, A. Shabanikia, M. Enhessari, Fabrication BaZrO3/PBIbased nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells, J. Power Sources 276(2015) 62-72. [105] C.M.C. Suryani, Y.L. Liu, Y.M. Lee, Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells, J. Mater. Chem. 21(20) (2011) 7480-7486. [106] A. Shabanikia, M. Javanbakht, H.S. Amoli, K. Hooshyari, M. Enhessari, Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuel cells operating at high temperature, Electrochim. Acta 154(2015) 370-378. [107] N. Üregen, K. Pehlivanoğlu, Y. Özdemir, Y. Devrim, Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells, Int. J. Hydrog. Energy 42(4) (2017) 2636-2647. [108] M.A. Imran, T.T. Li, X.M. Wu, X.M. Yan, G.H. Abdul-SammedKhan, Fabrication and characterization of sulfonated polybenzimidazole/sulfonated imidized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cells, J. Appl. Polym. Sci. 136(34) (2019) 47892. [109] N.N. Krishnan, S. Lee, R.V. Ghorpade, A. Konovalova, J.H. Jang, H.J. Kim, J. Han, D. Henkensmeier, H. Han, Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HTPEM fuel cell, J. Membr. Sci. 560(2018) 11-20. [110] J.S. Yang, C. Liu, L.P. Gao, J. Wang, Y.X. Xu, R.H. He, Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications, RSC Adv. 5(122) (2015) 101049-101054. [111] Y.F. Yan, Z.E. Zhang, L. Zhang, X. Wang, K. Liu, Z.Q. Yang, Investigation of autothermal reforming of methane for hydrogen production in a spiral multi-cylinder micro-reactor used for mobile fuel cell, Int. J. Hydrog. Energy 40(4) (2015) 1886-1893. |
[1] | Qing Lin, Guoquan Zhang, Kun Wang, Dongmei Luo, Siyang Tang, Hairong Yue. Two-stage cyclic ammonium sulfate roasting and leaching of extracting vanadium and titanium from vanadium slag [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 39-47. |
[2] | Xingzheng Liu, Chuanbo Fu, Manting Wang, Jiexin Wang, Haikui Zou, Yuan Le, Jianfeng Chen. High-gravity technology intensified Knoevenagel condensation-Michael addition polymerization of poly (ethylene glycol)-poly (n-butyl cyanoacrylate) for blood-brain barrier delivery [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 94-103. |
[3] | Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 1-14. |
[4] | Jialu Zhang, Xiang Liu, Shuai Liu, Yuxing Li, Qihui Hu, Wuchang Wang. Microscopic morphology evolution of the crystal structure of tetrahydrofuran hydrate under flowing condition [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 103-110. |
[5] | Jing Dou, Shuo Han, Saisai Lin, Zhikan Yao, Lian Hou, Lin Zhang. Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 194-202. |
[6] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[7] | Liwang Wang, Hualin Wang, Liang Ma, Zhanghuang Yang, Erwen Chen. Gas cyclone-liquid jet absorption separator used for treatment of tail gas containing HCl in titanium dioxide industry [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 435-446. |
[8] | Haoqing Xu, Wenyan Feng, Menglong Sheng, Ye Yuan, Bo Wang, Jixiao Wang, Zhi Wang. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 152-160. |
[9] | Shichao Yu, Rui Liao, Baojun Yang, Chaojun Fang, Zhentang Wang, Yuling Liu, Baiqiang Wu, Jun Wang, Guanzhou Qiu. Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: A review [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 109-120. |
[10] | Patsakol Prayoonpunratn, Trin Jedsukontorn, Mali Hunsom. Photocatalytic activity of metal nanoparticle-decorated titanium dioxide for simultaneous H2 production and biodiesel wastewater remediation [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 86-100. |
[11] | Fenghao Guo, Yuanyuan Ding, Yanyan Wang, Xiao Gao, Zhiyong Chen. Functional monodisperse microspheres fabricated by solvothermal precipitation co-polymerization [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 323-331. |
[12] | Erjun Zhang, Kanggen Zhou, Wei Chen, Xuekai Zhang, Changhong Peng. Separation of As and Bi and enrichment of As, Cu, and Zn from copper dust using an oxidation-leaching approach [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 125-131. |
[13] | Lei Ma, Hongxia Lv, Haonan Yu, Lingtong Kong, Rongyue Zhang, Xiaoyan Guo, Haibo Jin, Guangxiang He, Xiaoyan Liu. In-depth investigation on the factors affecting the performance of high oil-absorption resin by response surface method [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 286-296. |
[14] | Ying Xu, Pengru Chen, Wei Lv, Chenguang Wang, Longlong Ma, Qi Zhang. Hydrogenolysis of organosolv hydrolyzed lignin over high-dispersion Ni/Al-SBA-15 catalysts for phenolic monomers [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 307-314. |
[15] | Chunguang Song, Hongling Zhang, Yuming Dong, Lili Pei, Honghui Liu, Junsheng Jiang, Hongbin Xu. Investigation on the fabrication of lightweight aggregate with acid-leaching tailings of vanadium-bearing stone coal minerals and red mud [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 353-359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||