[1] |
B.F. Arlas, L. Rueda, P.M. Stefani, K.D. Caba, I. Mondragon, A. Eceiza, Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester)diol, Thermochim. Acta 459(2007) 94-103.
|
[2] |
R.M. Versteegen, R.P. Sijbesma, E.W. Maijer, Polyurethanes:Synthesis and characterization, Angew. Chem. Int. Ed. 38(2010) 2917-2919.
|
[3] |
D.L. Sun, S.J. Xie, J.R. Deng, Z.S. Chao, Progress in clean synthesis of hexamethylene-1,6-diisocyanate, Chem. Ind. Eng. 27(2010) 271-277.
|
[4] |
O. Kreye, H. Mutlu, M.A.R. Meier, Sustainable routes to polyurethane precursors, Green Chem. 15(2013) 1431-1455.
|
[5] |
J.S. Nowick, D.L. Holmes, G. Noronha, E.M. Smith, T.M. Nguyen, S.L. Huang, Synthesis of peptide isocyanates and isothiocyanates, J. Org. Chem. 61(1996) 3929-3934.
|
[6] |
E. Delebecq, J.P. Pascault, B. Boutevin, F. Ganachaud, On the versatility of urethane/urea bonds:Reversibility, blocked isocyanate, and non-isocyanate polyurethane, Chem. Rev. 113(2012) 80-118.
|
[7] |
W.H. Lin, Y.S. Guo, S.A. Dai, An efficient one-pot synthesis of aliphatic diisocyanate from diamine and aiphenyl carbonate, J. Taiwan Inst. Chem. Eng. 50(2015) 322-327.
|
[8] |
Y. Cao, X.T. Li, H.Q. Li, L.G. Wang, G.Y. Zhu, Q. Tang, Heterogeneous synthesis of dimethylhexane-1,6-dicarbamate from 1,6-hexanediamine and methyl carbonate by two-step variable temperature technology in methanol over CeO2 catalyst, Chin. J. Chem. Eng. 23(2) (2014) 446-450.
|
[9] |
H.Q. Li, Y. Cao, X.T. Li, L.G. Wang, F.J. Li, G.Y. Zhu, Heterogeneous catalytic methoxycarbonylation of 1,6-hexanediamine by dimethyl carbonate to dimethylhexane-1,6-dicarbamate, Ind. Eng. Chem. Res. 53(2) (2014) 626-634.
|
[10] |
L.Y. Zhao, P. He, L.G. Wang, A. Muhammad, Y. Cao, H.Q. Li, Catalysts screening, optimization and mechanism studies of dimethylhexane-1,6-dicarbamate synthesis from 1,6-hexanediamine and dimethyl carbonate over Mn(OAc)2 catalyst, Catal. Today 281(2017) 392-401.
|
[11] |
A. Muhammad, Y. Cao, L.G. Wang, P. He, H.Q. Li, Synthesis of hexamethylene-1,6-dicarbamate by methoxycarbonylation of 1,6-hexamethylene diamine with dimethyl carbonate over bulk and hybrid heteropoly acid catalyst, Res. Chem. Intermed. 43(2017) 6951-6972.
|
[12] |
T. Masuda, D. Saylik, L. Diebele. Production of aliphatic isocyanate:Japan Pat, 6239826, 1994.
|
[13] |
S.C. Miranda, C.C. Cabrero, E.F. Gutierrez, P.S. Carnero, M.S. Queralt, P.U. Sola, Isocyanate production procedure, US Pat, 6639101, 2003.
|
[14] |
D.L. Sun, J.Y. Luo, R.Y. Wen, J.R. Deng, Z.S. Chao, Phosgene-free synthesis of hexamethylene-1, 6-diisocyanate by the catalytic decomposition of dimethylhexane-1, 6-dicarbamate over zinc-incorporated berlinite (ZnAlPO4), J. Hazard. Mater. 266(2014) 167-173.
|
[15] |
M.J. Hyun, M. Shin, Y.J. Kim, Y.W. Suh, Phosgene-free decomposition of dimethylhexane-1,6-dicarbamate over ZnO, Res. Chem. Intermed. 42(2016) 57-70.
|
[16] |
C. Jeong, M.J. Hyun, Y.W. Suh, Activity of coprecipitated CuO/ZnO catalysts in the decomposition of dimethylhexane-1,6-dicarbamate, Catal. Commun. 70(2015) 34-39.
|
[17] |
Y. Cao, H. Li, N. Qin, G. Zhu, Kinetics of the decomposition of dimethylhexane-1,6-dicarbamate to 1,6-hexamethylene diisocyanate, Chin. J. Chem. Eng. 23(2015) 775-779.
|
[18] |
C.T. Hung, K.C. Lin, C.B. Wang, S.H. Begum, X. Han, S.B. Liu, Zeolite ZSM-5 supported bimetallic Fe-based catalysts for selective catalytic reduction of NO:effects of acidity and metal loading, Adv. Porous Mater. 4(2016) 189-199.
|
[19] |
N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins:a review, Appl. Catal. A Gen. 398(2011) 1-17.
|
[20] |
A. Muhammad, Y. Cao, P. He, L.G. Wang, J.Q. Chen, H.Q. Li, An efficient green route for hexamethylene-1,6-diisocyanate synthesis by thermal decomposition of hexamethylene-1,6-dicarbamate over Co3O4/ZSM-5 catalyst:An indirect utilization of CO2, Chin. J. Chem. Eng. 25(2017) 1760-1770.
|
[21] |
L.F. Isernia, FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite, Mater. Res. 16(2013) 792-802.
|
[22] |
X.H. Zhao, L. Wei, J. Julson, J.Z. Gu, Y.H. Cao, Catalytic cracking of inedible camelina oils to hydrocarbon fuels over bifunctional Zn/ZSM-5 catalysts, Korean J. Chem. Eng. 32(2015) 1528-1541.
|
[23] |
S.H. Zhang, Z.X. Gao, S.J. Qing, S.Y. Liu, Y. Qiao, Effect of zinc introduction on catalytic performance of ZSM-5 in conversion of methanol to light olefins, Chem. Pap. 68(2014) 1187-1193.
|
[24] |
Z.J. Wang, H.M. Zhang, L.G. Zhang, J.S. Yuan, S.G. Yan, C.Y. Wang, Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction, Nanotechnology 14(2003) 11-15.
|
[25] |
C.W. Tang, C.B. Wang, S.H. Chien, Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS, Thermochim. Acta 473(2008) 68-73.
|
[26] |
A. Fisher, P. Goodall, M.W. Hinds, S.N. Nelms, D.M. Penny, Atomic spectrometry update. Industrial analysis:Metals, chemicals and advanced materials, J. Anal. At. Spectrom. 19(2004) 1567-1595.
|
[27] |
P.C. Roy, W.H. Doh, S.K. Jo, C.M. Kim, Interaction of methanol and hydrogen on a ZnO (0001) single crystal surface, J. Phys. Chem. C 117(2013) 15116-15121.
|