Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (3): 564-574.DOI: 10.1016/j.cjche.2018.05.007
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Yang Han, Shengnan Li, Rong Ding, Wenjin Xu, Guangxu Zhang
Received:
2018-01-31
Revised:
2018-04-17
Online:
2019-04-25
Published:
2019-03-28
Contact:
Yang Han,E-mail addresses:hanyang120427@163.com;Guangxu Zhang,E-mail addresses:zhanggx2002@163.com
Supported by:
Supported by the National Natural Science Foundation of China (21676206).
Yang Han, Shengnan Li, Rong Ding, Wenjin Xu, Guangxu Zhang
通讯作者:
Yang Han,E-mail addresses:hanyang120427@163.com;Guangxu Zhang,E-mail addresses:zhanggx2002@163.com
基金资助:
Supported by the National Natural Science Foundation of China (21676206).
Yang Han, Shengnan Li, Rong Ding, Wenjin Xu, Guangxu Zhang. Baeyer–Villiger oxidation of cyclohexanone catalyzed by cordierite honeycomb washcoated with Mg–Sn–W composite oxides[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 564-574.
Yang Han, Shengnan Li, Rong Ding, Wenjin Xu, Guangxu Zhang. Baeyer–Villiger oxidation of cyclohexanone catalyzed by cordierite honeycomb washcoated with Mg–Sn–W composite oxides[J]. 中国化学工程学报, 2019, 27(3): 564-574.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.05.007
[1] | K. Mandai, M. Hanata, K. Mitsudo, et al., Bacteriogenic iron oxide as an effective catalyst for Baeyer-Villiger oxidation with molecular oxygen and benzaldehyde, Tetrahedron 71(2015) 9403-9407. |
[2] | Y. Ogasawara, S. Uchida, K. Yamaguchi, et al., A Tin-Tungsten mixed oxide as an efficient heterogeneous catalyst for C-C bond-forming reactions, Chem. Eur. J. 15(2009) 4343-4349. |
[3] | J.P. Mehta, D.K. Parmar, D.R. Godhani, et al., Heterogeneous catalysts hold the edge over homogeneous systems:Zeolite-Y encapsulated complexes for Baeyer-Villiger oxidation of cyclohexanone, J. Mol. Catal. A Chem. 421(2016) 178-188. |
[4] | Y. Wang, T. Yokoi, R. Otomo, et al., Synthesis of Sn-containing mesoporous silica nanospheres as efficient catalyst for Baeyer-Villiger oxidation, Appl. Catal. A Gen. 490(2015) 93-100. |
[5] | R. Kumar, P.P. Das, A.S. Al-Fatesh, et al., Highly active InOx/TUD-1 catalyst towards Baeyer-Villiger oxidation of cyclohexanone using molecular oxygen and benzaldehyde, Catal. Commun. 74(2016) 80-84. |
[6] | M. Uyanik, K. Ishihara, Baeyer-Villiger oxidation using hydrogen peroxide, ACS Catal. 3(2013) 513-520. |
[7] | H.Y. Lan, X.T. Zhou, H.B. Ji, Remarkable differences between benzaldehyde and isobutyraldehyde as coreductant in the performance toward the iron(Ⅲ) porphyrins-catalyzed aerobic BaeyereVilliger oxidation of cyclohexanone, kinetic and mechanistic features, Tetrahedron 69(2013) 4241-4246. |
[8] | R. Llamas, C. Jimenez-Sanchidrian, J.R. Ruiz, Heterogeneous Baeyer-Villiger oxidation of ketones with H2O2/nitrile using Mg/Al hydrotalcite as catalyst, Tetrahedron 63(2007) 1435-1439. |
[9] | R. Llamas, C. Jimenez-Sanchidrian, J.R. Ruiz, Environmentally friendly Baeyer-Villiger oxidation with H2O2/nitrile over Mg(OH)2 and MgO, Appl. Catal. B Environ. 72(2007) 18-25. |
[10] | M. Paul, N. Pal, J. Mondal, et al., New mesoporous magnesium-aluminum mixed oxide and its catalytic activity in liquid phase Baeyer-Villiger oxidation reaction, Chem. Eng. Sci. 71(2012) 564-572. |
[11] | A. Corma, L.T. Nemeth, M. Renz, et al., Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations, Nature 412(2001) 423-425. |
[12] | J. Zang, Y. Ding, L. Yan, et al., Highly efficient and reusable Cu-MCM-41 catalyst for the Baeyer-Villiger oxidation of cyclohexanone, Catal. Commun. 51(2014) 24-28. |
[13] | A.V. Malkov, F. Friscourt, M. Bell, et al., Enantioselective Baeyer-Villiger oxidation catalyzed by palladium(Ⅱ) complexes with chiral P,N-ligands, J. Org. Chem. 73(2008) 3996-4003. |
[14] | L.S. Martins, A.J.L. Pombeiro, C-scorpionate rhenium complexes and their application as catalysts in Baeyer-Villiger oxidation of ketones, Inorg. Chim. Acta 455(2016) 390-397. |
[15] | J.R. Ruiz, C. Jimenez-Sanchidrian, R. Llamas, Hydrotalcites as catalysts for the Baeyer-Villiger oxidation of cyclic ketones with hydrogen peroxide/benzonitrile, Tetrahedron 62(2006) 11697-11703. |
[16] | Z.Q. Qiang, Q.H. Zhang, J.J. Luo, et al., Baeyer-Villiger oxidation of ketones with hydrogen peroxide catalyzed by Sn-palygorskite, Tetrahedron Lett. 46(2005) 3505-3508. |
[17] | Z.Q. Lei, G.F. Ma, C.G. Jia, Montmorillonite (MMT) supported tin (Ⅱ) chloride:An efficient and recyclable heterogeneous catalyst for clean and selective Baeyer-Villiger oxidation with hydrogen peroxide, Catal. Commun. 8(2007) 305-309. |
[18] | J. Olszowka, R. Karcz, B. Napruszewska, et al., Magnesium and/or calcium-containing natural minerals as ecologically friendly catalysts for the Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide, Appl. Catal. A Gen. 509(2016) 52-65. |
[19] | R.S. Varma, Advances in green chemistry:Chemical syntheses using microwave irradiation, Tetrahedron 58(2002) 1235-1255. |
[20] | C.G. Piscopo, S. Loebbecke, R. Maggi, et al., ChemInform abstract:Supported sulfonic acid as green and efficient catalyst for Baeyer-Villiger oxidation with 30% aqueous hydrogen peroxide, Adv. Synth. Catal. 352(2010) 1625-1629. |
[21] | Q.G. Ma, L. Li, Y.X. Cao, et al., Sn-bentonite-induced Baeyer-Villiger oxidation of 2-heptylcyclopentanone to δ-dodecalactone with aqueous hydrogen peroxide, Res. Chem. Intermed. 41(2015) 2249-2256. |
[22] | A. Drozdz, A. Chrobok, S. Baj, et al., The chemo-enzymatic Baeyer-Villiger oxidation of cyclic ketones with an efficient silica-supported lipase as a biocatalyst, Appl. Catal. A Gen. 467(2013) 163-170. |
[23] | K. Mandai, M. Hanata, K. Mitsudo, et al., ChemInform abstract:Bacteriogenic iron oxide as an effective catalyst for Baeyer-Villiger oxidation with molecular oxygen and benzaldehyde, ChemInform 47(2016) 9403-9407. |
[24] | L.E. Gomez, I.S. Tiscornia, A.V. Boix, et al., Co/ZrO2 catalysts coated on cordierite monoliths for CO preferential oxidation, Appl. Catal. A Gen. 401(2001) 124-133. |
[25] | A. Vita, G. Cristiano, C. Italiano, et al., Methane oxy-steam reforming reaction:Performances of Ru/g-Al2O3 catalysts loaded on structured cordierite monoliths, Int. J. Hydrog. Energy 39(2014) 18592-18603. |
[26] | G. Grzybek, P. Stelmachowski, P. Indyka, et al., Cobalt-zinc spinel dispersed over cordierite monoliths for catalytic N2O abatement from nitric acid plants, Catal. Today 257(2015) 93-97. |
[27] | F. Li, B. Shen, L. Tian, et al., Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica, Powder Technol. 297(2016) 384-391. |
[28] | Z.W. Xi, N. Zhou, Y. Sun, et al., Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide, Science 292(2001) 1139-1141. |
[29] | D.M. Gomez, J.M. Gatica, J.C. Hernandez-Garrido, et al., A novel CoOx/La-modifiedCeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation, Appl. Catal. B Environ. 144(2014) 425-434. |
[30] | B.M. Sollier, L.E. Gomez, A.V. Boix, et al., Oxidative coupling of methane on Sr/La2O3 catalysts:Improving the catalytic performance using cordierite monoliths and ceramic foams as structured substrates, Appl. Catal. A Gen. 532(2017) 65-76. |
[31] | E.D. Banus, M.A. Ulla, E.E. Miro, et al., Structured catalysts for soot combustion for diesel engines, Diesel Engine 2013, pp. 117-142. |
[32] | A.K. Mogalicherla, D. Kunzru, The effect of prewetting on the loading of c-alumina washcoated cordierite monolith, Int. J. Appl. Ceram. Technol. 8(2011) 430-436. |
[33] | P. Avila, M. Montes, E.E. Miro, Monolithic reactors for environmental applications:A review on preparation technologies, Chem. Eng. J. 109(2005) 11-36. |
[34] | L.E. Gomez, I.S. Tiscornia, A.V. Boix, et al., CO preferential oxidation on cordierite monoliths coated with Co/CeO2 catalysts, Int. J. Hydrog. Energy 37(2012) 14812-14819. |
[35] | C. Plana, S. Armenise, A. Monzon, et al., Ni on alumina-coated cordierite monoliths for in situ generation of CO-free H2 from ammonia, J. Catal. 275(2010) 228-235. |
[36] | J. Wang, L. Ye, M. Jin, X. Wang, Global analyses of Chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type Ⅱ cells, airway epithelial cells, and lymphocytes, Biol. Direct 10(2015) 9. |
[37] | G.X. Zhang, X.C. Ren, H.B. Zhang, et al., MgO/SnO2/WO3 as catalysts for synthesis of ε-caprolactone over oxidation of cyclohexanone with peracetic acid, Catal. Commun. 58(2015) 59-63. |
[38] | O.A. Al-Harbi, C. Ozgur, M.M. Khan, Fabrication and characterization of single phase cordierite honeycomb monolith with porous wall from natural raw materials as catalyst support, Ceram. Int. 41(2015) 3526-3532. |
[39] | R.A. Steffen, S. Teixeira, J. Sepulveda, et al., Alumina-catalyzed Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide, J. Mol. Catal. A Chem. 287(2008) 41-44. |
[40] | P. Brussino, J.P. Bortolozzi, V.G. Milt, et al., NiCe/r-Al2O3 coated onto cordierite monoliths applied to Oxidative Dehydrogenation of Ethane (ODE), Catal. Today 273(2016) 259-265. |
[41] | Z. Yang, L. Niu, Z. Ma, et al., Fabrication of highly active Sn/W mixed transition-metal oxides as solid acid catalysts, Transit. Met. Chem. 36(2011) 269-274. |
[42] | S. Rahman, S.A. Farooqui, A. Rai, et al., Mesoporous TUD-1 supported indium oxide nanoparticles for epoxidation of styrene using molecular O2, RSC Adv. 5(2015) 46850-46860. |
[43] | Q. Tian, W. Wu, L. Sun, et al., Tube-like ternary α-Fe2O3@SnO2@Cu2O sandwich heterostructures:Synthesis and enhanced photocatalytic properties, ACS Appl. Mater. Interfaces 6(2014) 13088-13097. |
[44] | N. Wang, Y. Du, W. Ma, et al., Rational design and synthesis of SnO2-encapsulated α-Fe2O3 nanocubes as a robust and stable photo-Fenton catalyst, Appl. Catal. B Environ. 210(2017) 23-33. |
[45] | S. Zhang, Q. Zhong, Y. Shen, et al., New insight into the promoting role of process on the CeO2-WO3/TiO2 catalyst for NO reduction with NH3 at low-temperature, J. Colloid Interface Sci. 448(2015) 417-426. |
[46] | S. Zhang, Q. Zhong, Surface characterization studies on the interaction of V2O5-WO3/TiO2 catalyst for low temperature SCR of NO with NH3, J. Solid State Chem. 221(2015) 49-56. |
[47] | B. Liu, J. Du, X. Lv, et al., Washcoating of cordierite honeycomb with vanadia-tungsta-titania mixed oxides for selective catalytic reduction of NO with NH3, Catal. Sci. Technol. 5(2015) 1241-1250. |
[48] | L. Zong, F. Dong, G. Zhang, et al., Highly efficient mesoporous V2O5/WO3-TiO2 catalyst for selective catalytic reduction of NOx:Effect of the valence of V on the catalytic performance, Catal. Surv. Jpn. 21(2017) 103-113. |
[49] | V.I. Alexiadis, J.W. Thybaut, P.N. Kechagiopoulos, et al., Oxidative coupling of methane:Catalytic behaviour assessment via comprehensive microkinetic modelling, Appl. Catal. B Environ. 150-151(2014) 496-505. |
[1] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[2] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
[3] | Yi Wu, Pengfei Song, Ningyan Li, Yanan Jiang, Yuan Liu. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 279-289. |
[4] | Kai Xue, Yanchun Xue, Jing Wang, Shuya Zhang, Xingmei Guo, Xiangjun Zheng, Fu Cao, Qinghong Kong, Junhao Zhang, Zhong Jin. KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 214-223. |
[5] | Shuang Qiu, Yonghou Xiao, Haoran Wu, Shengnan Lu, Qidong Zhao, Gaohong He. One-pot synthesis of bimetallic CeCu-SAPO-34 for high-efficiency selective catalytic reduction of nitrogen oxides with NH3 at low temperature [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 193-202. |
[6] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[7] | Aiqin Gao, Xiang Luo, Huanghuang Chen, Aiqin Hou, Hongjuan Zhang, Kongliang Xie. Design of the reactive dyes containing large planar multi-conjugated systems and their application in non-aqueous dyeing [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 264-271. |
[8] | Tengjie Wang, Wenkai Li, Xuehui Ge, Ting Qiu, Xiaoda Wang. Kinetics measurement of ethylene-carbonate synthesis via a fast transesterification by microreactors [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 243-250. |
[9] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 310-316. |
[10] | Xin Yong, Hong Chen, Huawang Zhao, Miao Wei, Yingnan Zhao, Yongdan Li. Insight into SO2 poisoning and regeneration of one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NOx by NH3 [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 184-193. |
[11] | Fangyou Yan, Wei Li, Jinli Zhang. Simultaneous synthesis of heat-integrated water networks by a nonlinear program: Considering the wastewater regeneration reuse [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 402-411. |
[12] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[13] | Hengyu Shen, Run Zou, Yangtao Zhou, Xing Guo, Yanan Guan, Duo Na, Jinsong Zhang, Xiaolei Fan, Yilai Jiao. Additive manufacturing of sodalite monolith for continuous heavy metal removal from water sources [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 82-90. |
[14] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
[15] | Bo Zhang, Hongwen Chen, Liming Jiang, Youqing Shen, Dan Zhao, Zhuxian Zhou. A breathing A4 paper by in situ growth of green metal–organic frameworks for air freshening and cleaning [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 95-102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||