Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (5): 979-992.DOI: 10.1016/j.cjche.2018.08.029
• Fluid Dynamics and Transport Phenomena • Next Articles
Musango Lungu1,2, Haotong Wang1, Jingdai Wang1, Ronald Ngulube2, Yongrong Yang1, Fengqiu Chen1, John Siame2
Received:
2018-02-24
Revised:
2018-08-25
Online:
2019-06-27
Published:
2019-05-28
Contact:
Jingdai Wang
Supported by:
Musango Lungu1,2, Haotong Wang1, Jingdai Wang1, Ronald Ngulube2, Yongrong Yang1, Fengqiu Chen1, John Siame2
通讯作者:
Jingdai Wang
基金资助:
Musango Lungu, Haotong Wang, Jingdai Wang, Ronald Ngulube, Yongrong Yang, Fengqiu Chen, John Siame. Assessment of the TFM in predicting the onset of turbulent fluidization[J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 979-992.
Musango Lungu, Haotong Wang, Jingdai Wang, Ronald Ngulube, Yongrong Yang, Fengqiu Chen, John Siame. Assessment of the TFM in predicting the onset of turbulent fluidization[J]. 中国化学工程学报, 2019, 27(5): 979-992.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.08.029
[1] D. Kunii, O. Levenspiel, Fluidization Engineering, Second ed. Butterworth-Heinemann, Boston, 1991. [2] J.R. Grace, Contacting modes and behaviour classification of gas-solid and other two-phase suspensions, Can. J. Chem. Eng. 64(1986) 353-363. [3] H.T. Bi, J.R. Grace, Effect of measurement method on the velocities used to demarcate the onset of turbulent fluidization, Chem. Eng. J. Biochem. Eng. J. 57(1995) 261-271. [4] J. Drahos, Quo vadis, the analysis of time series in reactor engineering? Chem. Eng. Res. Des. 81(2003) 411-412. [5] J.R. Grace, Reflections on turbulent fluidization and dense suspension upflow, Powder Technol. 113(2000) 242-248. [6] S. Nedeltchev, New methods for flow regime identification in bubble columns and fluidized beds, Chem. Eng. Sci. 137(2015) 436-446. [7] J. Yerushalmi, N.T. Cankurt, Further studies of the regimes of fluidization, Powder Technol. 24(1979) 187-205. [8] H.T. Bi, J.R. Grace, Flow regime diagrams for gas-solid fluidization and upward transport, Int. J. Multiphase Flow 21(1995) 1229-1236. [9] F. Johnsson, R.C. Zijerveld, J.C. Schouten, C.M. Van Den Bleek, B. Leckner, Characterization of fuidization regimes by time-series analysis of pressure fluctuations, Int. J. Multiphase Flow 26(2000) 663-715. [10] J.R. Van Ommen, S. Sasic, J. Van der Schaaf, S. Gheorghiu, F. Johnsson, M.O. Coppens, Time-series analysis of pressure fluctuations in gas-solid fluidized beds-A review, Int. J. Multiphase Flow 37(2011) 403-428. [11] S. Sasic, B. Leckner, F. Johnsson, Characterization of fluid dynamics of fluidized beds by analysis of pressure fluctuations, Prog. Energy Combust. Sci. 33(2007) 453-496. [12] R.A. Cocco, S.B.R. Karri, T.M. Knowlton, J. Findlay, T. Gauthier, J.W. Chew, C.M. Hrenya, Intrusive probes in riser applications, AIChE J. 63(2017) 5361-5374. [13] L.T. Fan, T.C. Ho, S. Hiraoka, W.P. Walawender, Pressure fluctuations in a fluidized bed, AIChE J. 27(1981) 388-396. [14] X. Lu, H. Li, Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed, Chem. Eng. J. 75(1999) 113-119. [15] D. Bai, E. Shibuya, N. Nakagawa, K. Kato, Characterization of gas fluidization regimes using pressure fluctuations, Powder Technol. 87(1996) 105-111. [16] S.H. Lee, S.D. Kim, S.H. Park, Statistical and deterministic chaos analysis of pressure fluctuations in a fluidized bed of polymer powders, Korean J. Chem. Eng. 19(2002) 1020-1025. [17] J. van der Schaaf, J.R. van Ommen, F. Takens, J.C. Schouten, C.M. van den Bleek, Similarity between chaos analysis and frequency analysis of pressure fluctuations in fluidized beds, Chem. Eng. Sci. 59(2004) 1829-1840. [18] O.A. Jaiboon, B. Chalermsinsuwan, L. Mekasut, P. Piumsomboon, Effect of flow pattern on power spectral density of pressure fluctuation in various fluidization regimes, Powder Technol. 233(2013) 215-226. [19] J. Xiang, Q. Li, Z. Tan, Y. Zhang, Characterization of the flow in a gas-solid bubbling fluidized bed by pressure fluctuation, Chem. Eng. Sci. 174(2017) 93-103. [20] J. Zhu, M. Qi, S. Barghi, Identification of the flow structures and regime transition in gas-solid fluidized beds through moment analysis, AIChE J. 59(2013) 1479-1490. [21] Y.T. Makkawi, P.C. Wright, Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography, Chem. Eng. Sci. 57(2002) 2411-2437. [22] L. de Martín, J.V. Briongos, N. García-Hernando, J.M. Aragón, Detecting regime transitions in gas-solid fluidized beds from low frequency accelerometry signals, Powder Technol. 207(2011) 104-112. [23] H. Azizpour, R. Sotudeh-Gharebagh, R. Zarghami, M. Abbasi, N. Mostoufi, M.J. Mahjoob, Characterization of gas-solid fluidized bed hydrodynamics by vibration signature analysis, Int. J. Multiphase Flow 37(2011) 788-793. [24] J. Wang, C. Ren, Y. Yang, L. Hou, Characterization of particle fluidization pattern in a gas solid fluidized bed based on Acoustic Emission (AE) measurement, Ind. Eng. Chem. Res. 48(2009) 8508-8514. [25] Y. Zhou, L. Yang, Y. Lu, X. Hu, X. Luo, H. Chen, Flow regime identification in gas-solid two-phase fluidization via acoustic emission technique, Chem. Eng. J. 334(2018) 1484-1492. [26] J.R. Grace, T. Li, Complementarity of CFD, experimentation and reactor models for solving challenging fluidization problems, Particuology 8(2010) 498-500. [27] B. Chalermsinsuwan, T. Thummakul, D. Gidaspow, P. Piumsomboon, Characterization of fluidization regime in circulating fluidized bed reactor with high solid particle concentration using computational fluid dynamics, Korean J. Chem. Eng. 31(2014) 350-363. [28] G. Qiu, J. Ye, H. Wang, W. Yang, Investigation of flow hydrodynamics and regime transition in a gas-solids fluidized bed with different riser diameters, Chem. Eng. Sci. 116(2014) 195-207. [29] V. Salikov, S. Antonyuk, S. Heinrich, V.S. Sutkar, N.G. Deen, J.A.M. Kuipers, Characterization and CFD-DEM modelling of a prismatic spouted bed, Powder Technol. 270(2015) 622-636. [30] E. Ramirez, C.E.A. Finney, S. Pannala, C.S. Daw, J. Halow, Q. Xiong, Computational study of the bubbling-to-slugging transition in a laboratory-scale fluidized bed, Chem. Eng. J. 308(2017) 544-556. [31] R.W. Breault, R. Panday, L.J. Shadle, R. Cocco, A. Issangya, S.B. Reddy Karri, T.M. Knowlton, C. Guenther, Preface, Powder Technol. 203(2010) 1-2. [32] B. Sun, D. Gidaspow, Computation of circulating fluidized-bed riser flow for the fluidization VⅢ benchmark test, Ind. Eng. Chem. Res. 38(1999) 787-792. [33] T. Li, J.F. Dietiker, M. Shahnam, MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed, Chem. Eng. Sci. 84(2012) 746-760. [34] R. Panday, L.J. Shadle, M. Shahnam, R. Cocco, A. Issangya, J.S. Spenik, J.C. Ludlow, B. Gopalan, F. Shaffer, M. Syamlal, C. Guenther, S.B.R. Karri, T. Knowlton, Challenge problem:1. Model validation of circulating fluidized beds, Powder Technol. 258(2014) 370-391. [35] B. Gopalan, M. Shahnam, R. Panday, J. Tucker, F. Shaffer, L. Shadle, J. Mei, W. Rogers, C. Guenther, M. Syamlal, Measurements of pressure drop and particle velocity in a pseudo 2-D rectangular bed with Geldart Group D particles, Powder Technol. 291(2016) 299-310. [36] J.R. Grace, F. Taghipour, Verification and validation of CFD models and dynamic similarity for fluidized beds, Powder Technol. 139(2004) 99-110. [37] A.R. Khan, J.F. Richardson, The resistance to motion of a solid sphere in a fluid, Chem. Eng. Commun. 62(1987) 135-150. [38] B. Gopalan, F. Shaffer, A new method for decompositing of high speed particle image velocimetry data, Powder Technol. 220(2011) 164-171. [39] M. Lungu, H. Wang, J. Wang, Y. Yang, F. Chen, Two-fluid model simulations of the national energy technology laboratory bubbling fluidized bed challenge problem, Ind. Eng. Chem. Res. 55(2016) 5063-5077. [40] A.T. Andrews IV, P.N. Loezos, S. Sundaresan, Coarse-grid simulation of gas-particle flows in vertical risers, Ind. Eng. Chem. Res. 44(2005) 6022-6037. [41] M. Syamlal, T.J. O'Brien, Fluid dynamic simulation of O-3 decomposition in a bubbling fluidized bed, AIChE J. 49(2003) 2793-2801. [42] P.C. Johnson, P. Nott, R. Jackson, Frictional-collisional equations of motion for particulate flows and their application to chutes, J. Fluid Mech. 210(1990) 501-535. [43] R. Kikuchi, T. Yano, A. Tsutsumi, K. Yoshida, M. Punchochar, J. Drahos, Diagnosis of Chaotic Dynamics of Bubble Motion in a Bubble Column, Nos. 21, 19973741-3745. [44] M. Askarishahi, M. Salehi, H.R. Godini, G. Wozny, CFD study on solids flow pattern and solids mixing characteristics in bubbling fluidized bed:Effect of fluidization velocity and bed aspect ratio, Powder Technol. 274(2015) 379-392. [45] M. Lungu, H. Wang, G. Mwandila, J. Wang, Y. Yang, F. Chen, J. Siame, Effect of bed thickness on a pseudo 2D gas-solid fluidized bed turbulent flow structures and dynamics, Powder Technol. 336(2018) 594-608. [46] N.N. Clark, E.A. McKenzie Jr., M. Gautam, Differential pressure measurements in a slugging fluidized bed, Powder Technol. 67(1991) 187-199. [47] M.J.V. Goldschmidt, J. a M. Kuipers, W.P.M. Van Swaaij, Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow:Effect of coefficient of restitution on bed dynamics, Chem. Eng. Sci. 56(2001) 571-578. [48] L. Godfroy, F. Larachi, J. Chaouki, Position and Velocity of a Large Particle in a Gas/Solid Riser Using the Radioactive Particle Tracking Technique, Can. J. Chem. Eng. 77(2) (1999) 253-261. [49] L.T. Fan, T.-C. Ho, W.P. Walawender, Measurements of the rise velocities of bubbles, slugs and pressure waves in a gas-solid fluidized bed using pressure fluctuation signals, AIChE J. 29(1983) 33-39. [50] J. Van Der Schaaf, J.C. Schouten, F. Johnsson, C.M. Van Den Bleek, Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series, Int. J. Multiphase Flow 28(2002) 865-880. [51] N. Ellis, Hydrodynamics of Gas-Solid Turbulent Fluidized Beds, PhD Thesis, The University of British Columbia, 2003. [52] P. Cai, Y. Jin, Z.-Q. Yu, Z.-W. Wang, Mechanism of flow regime transition from bubbling to turbulent fluidization, AIChE J. 36(1990) 955-956. [53] J. Shabanian, J. Chaouki, Hydrodynamics of a gas-solid fluidized bed with thermally induced interparticle forces, Chem. Eng. J. 259(2015) 135-152. [54] Y. Zhang, H.T. Bi, J.R. Grace, C. Lu, Comparison of decoupling methods for analyzing pressure fluctuations in gas-fluidized beds, AIChE J. 56(2010) 869-877. [55] V.P. Chilekar, M.J.F. Warnier, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, J.R. van Ommen, Bubble size estimation in slurry bubble columns from pressure fluctuations, AIChE J. 51(2005) 1924-1937. [56] K.C. Ruthiya, V.P. Chilekar, M.J.F. Warnier, J. van der Schaaf, B.F.M. Kuster, J.C. Schouten, J.R. van Ommen, Detecting regime transitions in slurry bubble columns using pressure time series, AIChE J. 51(2005) 1951-1965. [57] Y. Zhang, H.T. Bi, J. Grace, C. Lu, Comparison of Decoupling Methods for Analyzing Pressure Fluctuations in Gas-Fluidized Beds, AIChE J. 56(2009) 869-877. [58] J. Ren, Q. Mao, J. Li, W. Lin, Wavelet analysis of dynamic behavior in fluidized beds, Chem. Eng. Sci. 56(2001) 981-988. [59] G.B. Zhao, Y.R. Yang, Multiscale resolution of fluidized-bed pressure fluctuations, AIChE J. 49(2003) 869-882. [60] J.W. Chew, R. Hays, J.G. Findlay, T.M. Knowlton, S.B. Reddy Karri, R.A. Cocco, C.M. Hrenya, Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser. I. Monodisperse systems, Chem. Eng. Sci. 68(2012) 72-81. [61] A. Anantharaman, S.B.R. Karri, J.G. Findlay, C.M. Hrenya, R.A. Cocco, J.W. Chew, Interpreting differential pressure signals for particle properties and operating conditions in a pilot-scale circulating fluidized bed riser, Ind. Eng. Chem. Res. 55(2016) 8659-8670. [62] H.T. Bi, N. Ellis, I.A. Abba, J.R. Grace, A state-of-the-art review of gas-solid turbulent fluidization, Chem. Eng. Sci. 55(2000) 4789-4825. [63] G.S. Lee, S.D. Kim, Pressure fluctuations in turbulent fluidized beds, J. Chem. Eng. Jpn. 21(1988) 515-521. [64] L. Leu, J.W. Huang, B.B. Gua, Axial pressure distribution in turbulent fluidized beds, Proc. Second Asian Conf. Fluid. Three-Phase React., Tokyo 1990, pp. 71-79. [65] M. Horio, Hydrodynamics of circulating fluidization:Present status and research needs, in:P. Basu, M. Horio, M. Hasatani (Eds.), Circ. Fluid. Bed Technol. Ⅲ, Pergamon, Toronto 1991, pp. 3-14. [66] A. Chehbouni, J. Chaouki, C. Guy, E.D. Klvana, Effets de differents parametres sur les vitesses de transition de la fluidisation en regime turbulent, Can. J. Chem. Eng. 73(1995) 41-50. [67] N. Ellis, H.T. Bi, C.J. Lim, J.R. Grace, Hydrodynamics of turbulent fluidized beds of different diameters, Powder Technol. 141(2004) 124-136. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[3] | Wenshi Huang, Yang Zhang, Yuxin Wu, Jingyu Wang, Minmin Zhou. Analysis of particle dispersion in a turbulent flow considering particle rotation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 29-39. |
[4] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[5] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[6] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[7] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[8] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[9] | Tianpeng LiZhou, Jiajia Luo, Tiefeng Wang. Enhancement of acetylene and ethylene yields in partially decoupled oxidation of ethane by changing the composition of heat carrier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 71-78. |
[10] | Yongjun Wu, Pan You, Peicheng Luo. Effect of pitched short blades on the flow characteristics in a stirred tank with long-short blades impeller [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 143-152. |
[11] | Mehdi Miansari, Mehdi Rajabtabar Darvishi, Davood Toghraie, Pouya Barnoon, Mojtaba Shirzad, As'ad Alizadeh. Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 424-434. |
[12] | Mohsen Rezaeimanesh, Ali Asghar Ghoreyshi, S.M. Peyghambarzadeh, Seyed Hassan Hashemabadi. A coupled CFD simulation approach for investigating the pyrolysis process in industrial naphtha thermal cracking furnaces [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 528-542. |
[13] | Anshi Hong, Zisheng Zhang, Xingang Li, Xin Gao. A generalized CFD model for evaluating catalytic separation process in structured porous materials [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 168-177. |
[14] | Chunhui Li, Bin Wu, Junjie Zhang, Peicheng Luo. Effect of swirling addition on the liquid mixing performance in a T-jets mixer [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 108-116. |
[15] | Zhangke Ma, Yingjie Li, Boyu Li, Zeyan Wang, Tao Wang, Wentao Lei. Calcium looping heat storage performance and mechanical property of CaO-based pellets under fluidization [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 170-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||