Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (6): 1257-1271.DOI: 10.1016/j.cjche.2018.08.019
• Special Issue: Separation Process Intensification of Chemical Engineering • Previous Articles Next Articles
Yi Liu
Received:
2018-07-03
Revised:
2018-07-25
Online:
2019-08-19
Published:
2019-06-28
Supported by:
Yi Liu
作者简介:
Yi Liu,E-mail address:diligenliu@dlut.edu.cn
基金资助:
Yi Liu. Beyond graphene oxides: Emerging 2D molecular sieve membranes for efficient separation[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1257-1271.
Yi Liu. Beyond graphene oxides: Emerging 2D molecular sieve membranes for efficient separation[J]. 中国化学工程学报, 2019, 27(6): 1257-1271.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.08.019
[1] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature 532(2016) 435-437. [2] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff:The trade-off between membrane permeability and selectivity, Science 356(2017) 1138-1148. [3] K. Varoon, X.Y. Zhang, B. Elyassi, D.D. Brewer, M. Gettel, S. Kumar, J.A. Lee, S. Maheshwari, A. Mittal, C.Y. Sung, M. Cococcioni, L.F. Francis, A.V. McCormick, K.A. Mkhoyan, M. Tsapatsis, Dispersible exfoliated zeolite nanosheets and their application as a selective membrane, Science 334(2011) 72-75. [4] H. Li, Z.N. Song, X.J. Zhang, Y. Huang, S.G. Li, Y.T. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science 342(2013) 95-98. [5] H.W. Kim, H.W. Yoon, S.-M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, H.B. Park, Selective gas transport through few-layered graphene and graphene oxide membranes, Science 342(2013) 91-95. [6] G.P. Liu, W.Q. Jin, N.P. Xu, Two-dimensional-material membranes:A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(2016) 13384-13397. [7] J.Y. Zhu, J.W. Hou, A. Uliana, Y.T. Zhang, M.M. Tian, B. Van der Bruggen, The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes, J. Mater. Chem. A 6(2018) 3773-3792. [8] A.K. Geim, Graphene:Status and prospects, Science 324(2009) 1530-1534. [9] S.P. Koenig, L.D. Wang, J. Pellegrino, J.S. Bunch, Selective molecular sieving through porous graphene, Nat. Nanotechnol. 7(2012) 728-732. [10] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(2012) 442-444. [11] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. (15) (2015) 5016-5030. [12] N. Song, X.L. Gao, Z. Ma, X.J. Wang, Y. Wei, C.J. Gao, A review of graphene-based separation membranes:Materials, characteristics, preparation and applications, Desalination 437(2018) 59-72. [13] W. Kim, S. Nair, Membranes from nanoporous 1D and 2D materials:A review of opportunities, developments, and challenges, Chem. Eng. Sci. 104(2013) 908-924. [14] X. Zhu, C.C. Tian, C.L. Do-Thanh, S. Dai, Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation, ChemSusChem 10(2017) 3304-3316. [15] Z.K. Zheng, R. Gruenker, X.L. Feng, Synthetic two-dimensional materials:A new paradigm of membranes for ultimate separation, Adv. Mater. 28(2016) 6529-6545. [16] A. Gugliuzza, A. Politano, E. Drioli, The advent of graphene and other two-dimensional materials in membrane science and technology, Curr. Opin. Chem. Eng. 16(2017) 78-85. [17] Y.L. Ying, Y.F. Yang, W. Ying, X.S. Peng, Two-dimensional materials for novel liquid separation membranes, Nanotechnology 27(2016) 332001. [18] Y.D. Zhao, Y.Z. Xie, Z.K. Liu, X.S. Wang, Y. Chai, F. Yan, Two-dimensional material membranes:An emerging platform for controllable mass transport applications, Small 10(2014) 4521-4542. [19] J. Choi, Z.P. Lai, S. Ghosh, D.E. Beving, Y.S. Yan, M. Tsapatsis, Layer-by-layer deposition of barrier and permselective c-oriented-MCM-22/silica composite membranes, Ind. Eng. Chem. Res. 46(2007) 7096-7106. [20] J. Choi, M. Tsapatsis, MCM-22/silica selective flake nanocomposite membranes for hydrogen separations, J. Am. Chem. Soc. 132(2010) 448-449. [21] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature 461(2009) 246-249. [22] K. Na, M. Choi, W. Park, Y. Sakamoto, O. Terasaki, R. Ryoo, Pillared MFI zeolite nanosheets of a single-unit-cell thickness, J. Am. Chem. Soc. 132(2010) 4169-4177. [23] H. Zhang, Q. Xiao, X.H. Guo, N.J. Li, P. Kumar, N. Rangnekar, M.Y. Jeon, S. Al-Thabaiti, K. Narasimharao, S.N. Basahel, B. Topuz, F.J. Onorato, C.W. Macosko, K.A. Mkhoyan, M. Tsapatsis, Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports, Angew. Chem. Int. Ed. 55(2016) 7184-7187. [24] D. Kim, M.Y. Jeon, B.L. Stottrup, M. Tsapatsis, para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface, Angew. Chem. Int. Ed. 57(2018) 480-485. [25] K.V. Agrawal, B. TopuZ, T.C.T. Pham, T.H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S.N. Basahel, L.F. Francis, C.W. Macosko, S. AlThabaiti, M. Tsapatsis, K.B. Yoon, Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers, Adv. Mater. 27(2015) 3243-3249. [26] M.Y. Jeon, D. Kim, P. Kumar, P.S. Lee, N. Rangnekar, P. Bai, M. Shete, B. Elyassi, H.S. Lee, K. Narasimharao, S.N. Basahel, S. Al-Thabaiti, W.Q. Xu, H.J. Cho, E.O. Fetisov, R. Thyagarajan, R.F. DeJaco, W. Fan, K.A. Mkhoyan, J.I. Siepmann, M. Tsapatsis, Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets, Nature 543(2017) 690-694. [27] S. Choi, J. Coronas, E. Jordan, W. Oh, S. Nair, F. Onorato, D.F. Shantz, M. Tsapatsis, Layered silicates by swelling of AMH-3 and nanocomposite membranes, Angew. Chem. Int. Ed. 47(2008) 552-555. [28] W. Kim, J.S. Lee, D.G. Bucknall, W.J. Koros, S. Nair, Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations, J. Membr. Sci. 441(2013) 129-136. [29] A. Galve, D. Sieffert, E. Vispe, C. Tellez, J. Coronas, C. Staudt, Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles, J. Membr. Sci. 370(2011) 131-140. [30] S. Castarlenas, P. Gorgojo, C. Casado-Coterillo, S. Masheshwari, M. Tsapatsis, C. Tellez, J. Coronas, Melt compounding of swollen titanosilicate JDF-L1 with polysulfone to obtain mixed matrix membranes for H2/CH4 separation, Ind. Eng. Chem. Res. 52(2013) 1901-1907. [31] A. Galve, D. Sieffert, C. Staudt, M. Ferrando, C. Guell, C. Tellez, J. Coronas, Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes, J. Membr. Sci. 431(2012) 163-170. [32] M.A. Camblor, A. Corma, M.J. Diaz-Cabanas, C. Baerlocher, Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25, J. Phys. Chem. B 102(1998) 44-51. [33] M.H. Zhu, Y.S. Liu, Y.K. Yao, J.M. Jiang, F. Zhang, Z. Yang, Z.H. Lu, I. Kumakiri, X.S. Chen, H. Kita, Preparation and catalytic performance of Ti-MWW zeolite membrane for phenol hydroxylation, Microporous Mesoporous Mater. 268(2018) 84-87. [34] Y. Peng, Y.S. Li, Y.J. Ban, H. Jin, W.M. Jiao, X.L. Liu, W.S. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science 346(2014) 1356-1359. [35] Y. Peng, Y.S. Li, Y.J. Ban, W.S. Yang, Two-dimensional metal-organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed. 56(2017) 9757-9761. [36] X.R. Wang, C.L. Chi, K. Zhang, Y.H. Qian, K.M. Gupta, Z.X. Kang, J.W. Jiang, D. Zhao, Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation, Nat. Commun. 8(2017) 14460. [37] Z.X. Zhong, J.F. Yao, R.Z. Chen, Z.X. Low, M. He, J.Z. Liu, H.T. Wang, Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties, J. Mater. Chem. A 3(2015) 15715-15722. [38] W.B. Li, P.C. Su, Z.J. Li, Z.H. Xu, F. Wang, H.S. Ou, J.H. Zhang, G.L. Zhang, E. Zeng, Ultrathin metal-organic framework membrane production by gel-vapour deposition, Nat. Commun. 8(2017) 406. [39] H.X. Ang, L. Hong, Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration, ACS Appl. Mater. Interfaces 9(2017) 28079-28088. [40] T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F.X. Llabres i Xamena, J. Gascon, Metal-organic framework nanosheets in polymer composite materials for gas separation, Nat. Mater. 14(2015) 48-55. [41] Z.X. Kang, Y.W. Peng, Z.G. Hu, Y.H. Qian, C.L. Chi, L.Y. Yeo, L. Tee, D. Zhao, Mixed matrix membranes composed of two-dimensional metal-organic framework nanosheets for pre-combustion CO2 capture:A relationship study of filler morphology versus membrane performance, J. Mater. Chem. A 3(2015) 20801-20810. [42] Y.D. Cheng, X.R. Wang, C.K. Jia, Y.X. Wang, L.Z. Zhai, Q. Wang, D. Zhao, Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation, J. Membr. Sci. 539(2017) 213-223. [43] G.H. Liu, Z.Y. Jiang, K.T. Cao, S. Nair, X.X. Cheng, J. Zhao, H. Gomaa, H. Wu, F.S. Pan, Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles, J. Membr. Sci. 523(2017) 185-196. [44] Y. Lo, D.Y. Kang, Pseudopolymorphic seeding for the rational synthesis of hybrid membranes with a zeolitic imidazolate framework for enhanced molecular separation performance, J. Mater. Chem. A 4(2016) 4172-4179. [45] Y. Wang, J.P. Li, Q.Y. Yang, C.L. Zhong, Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification, ACS Appl. Mater. Interfaces 8(2016) 8694-8701. [46] M.M. Tong, Q.Y. Yang, Q.T. Ma, D.H. Liu, C.L. Zhong, Few-layered ultrathin covalent organic framework membranes for gas separation:A computational study, J. Mater. Chem. A 4(2016) 124-131. [47] G. Li, K. Zhang, T. Tsuru, Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets, ACS Appl. Mater. Interfaces 9(2017) 8433-8436. [48] Z.X. Kang, Y.W. Peng, Y.H. Qian, D.Q. Yuan, M.A. Addicoat, T. Heine, Z.G. Hu, L. Tee, Z.G. Guo, D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater. 28(2016) 1277-1285. [49] Y.P. Ying, D.H. Liu, J. Ma, M.M. Tong, W.X. Zhang, H.L. Huang, Q.Y. Yang, C.L. Zhong, A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation, J. Mater. Chem. A 4(2016) 13444-13449. [50] H.W. Fan, J.H. Gu, H. Meng, A. Knebel, J. Caro, High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration, Angew. Chem. Int. Ed. 57(2018) 4083-4087. [51] T.W. Kim, M. Sahimi, T.T. Tsotsis, The preparation and characterization of hydrotalcite thin films, Ind. Eng. Chem. Res. 48(2009) 5794-5801. [52] T.W. Kim, M. Sahimi, T.T. Tsotsis, The preparation and characterization of hydrotalcite micromembranes, Chem. Eng. Sci. 64(2009) 1585-1590. [53] T.W. Kim, M. Sahimi, T.T. Tsotsis, Preparation of hydrotalcite thin films using an electrophoretic technique, Ind. Eng. Chem. Res. 47(2008) 9127-9132. [54] Y. Liu, N.Y. Wang, Z.W. Cao, J. Caro, Molecular sieving through interlayer galleries, J. Mater. Chem. A 2(2014) 1235-1238. [55] Y. Liu, N.Y. Wang, J. Caro, In situ formation of LDH membranes of different microstructures with molecular sieve gas selectivity, J. Mater. Chem. A 2(2014) 5716-5723. [56] Y. Liu, J.H. Pan, N.Y. Wang, F. Steinbach, X.L. Liu, J. Caro, Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks, Angew. Chem. Int. Ed. 54(2015) 3028-3032. [57] J.Y. Liao, Z. Wang, C.Y. Gao, S.C. Li, Z.H. Qiao, M. Wang, S. Zhao, X.M. Xie, J.X. Wang, S.C. Wang, Fabrication of high-performance facilitated transport membranes for CO2 separation, Chem. Sci. 5(2014) 2843-2849. [58] Y. Liu, N.Y. Wang, L. Diestel, F. Steinbach, J. Caro, MOF membrane synthesis in the confined space of a vertically aligned LDH network, Chem. Commun. 50(2014) 4225-4227. [59] Y. Liu, N.Y. Wang, J.H. Pan, F. Steinbach, J. Caro, In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates, J. Am. Chem. Soc. 136(2014) 14353-14356. [60] Y. Liu, Y. Peng, N.Y. Wang, Y.S. Li, J.H. Pan, W.S. Yang, J. Caro, Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors, ChemSusChem 8(2015) 3582-3586. [61] S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(2017) 17033. [62] J. Azamat, A. Khataee, Improving the performance of heavy metal separation from water using MoS2 membrane:Molecular dynamics simulation, Comput. Mater. Sci. 137(2017) 201-207. [63] W.F. Li, Y.M. Yang, J.K. Weber, G. Zhang, R.H. Zhou, Tunable, strain-controlled nanoporous MoS2 filter for water desalination, ACS Nano 10(2016) 1829-1835. [64] Y.D. Zhang, Z.S. Meng, Q. Shi, H.Q. Gao, Y.Z. Liu, Y.H. Wang, D.W. Rao, K.M. Deng, R.F. Lu, Nanoporous MoS2 monolayer as a promising membrane for purifying hydrogen and enriching methane, J. Phys. Condens. Matter 29(2017) 375201. [65] L.W. Sun, H.B. Huang, X.S. Peng, Laminar MoS2 membranes for molecular separation, Chem. Commun. 49(2013) 10718-10720. [66] D. Wang, Z.G. Wang, L. Wang, L. Hu, J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-performance hydrogen separation, Nanoscale 7(2015) 17649-17652. [67] A. Achari, S. Sahana, M. Eswaramoorthy, High performance MoS2 membranes:Effects of thermally driven phase transition on CO2 separation efficiency, Energy Environ. Sci. 9(2016) 1224-1228. [68] M.M. Deng, K. Kwac, M. Li, Y. Jung, H.G. Park, Stability, molecular sieving and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide, Nano Lett. 17(2017) 2342-2348. [69] Z.Y. Wang, B.X. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets, Environ. Sci. Technol. 51(2017) 8229-8244. [70] W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A.W. Dryfe, M.A. Bissett, Desalination and nanofiltration through functionalized laminar MoS2 membranes, ACS Nano 11(2017) 11082-11090. [71] D.K. Chen, W. Ying, Y. Guo, Y.L. Ying, X.S. Peng, Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane, ACS Appl. Mater. Interfaces 9(2017) 44251-44257. [72] Y.J. Shen, H.X. Wang, X. Zhang, Y.T. Zhang, MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method, ACS Appl. Mater. Interfaces 8(2016) 23371-23378. [73] F.S. Pan, H. Ding, W.D. Li, Y.M. Song, H. Yang, H. Wu, Z.Y. Jiang, B.Y. Wang, X.Z. Cao, Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets, J. Membr. Sci. 545(2018) 29-37. [74] L.W. Sun, Y.L. Ying, H.B. Huang, Z.G. Song, Y.Y. Mao, Z.P. Xu, X.S. Peng, Ultrafast molecular separation through layered WS2 nanosheet membranes, ACS Nano 8(2014) 6304-6311. [75] J.Y. Lin, R.X. Zhang, W.Y. Ye, N. Jullok, A. Sotto, B. Van der Bruggen, Nano-WS2 embedded PES membrane with improved fouling and permselectivity, J. Colloid Interface Sci. 396(2013) 120-128. [76] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23(2011) 4248-4253. [77] C.E. Ren, K.B. Hatzell, M. Alhabeb, Z. Ling, K.A. Mahmoud, Y. Gogotsi, Charge-and size-selective ion sieving through Ti3C2Tx MXene membranes, J. Phys. Chem. Lett. 6(2015) 4026-4031. [78] L. Ding, Y.Y. Wei, Y.J. Wang, H.B. Chen, J. Caro, H.H. Wang, A two-dimensional lamellar membrane:MXene nanosheet stacks, Angew. Chem. Int. Ed. 56(2017) 1825-1829. [79] G.Z. Liu, J. Shen, Q. Liu, G.P. Liu, J. Xiong, J. Yang, W.Q. Jin, Ultra-thin twodimensional MXene membrane for pervaporation desalination, J. Membr. Sci. 548(2018) 548-558. [80] L. Ding, Y.Y. Wei, L.B. Li, T. Zhang, H.H. Wang, J. Xue, L.X. Ding, S.Q. Wang, J. Caro, Y. Gogotsi, MXene molecular sieving membranes for highly efficient gas separation, Nat. Commun. 9(2018) 155. [81] L.B. Li, T. Zhang, Y.F. Duan, Y.Y. Wei, C.J. Dong, L. Ding, Z.W. Qiao, H.H. Wang, Selective gas diffusion in two-dimensional MXene lamellar membranes:Insights from molecular dynamics simulations, J. Mater. Chem. A 6(2018) 11734-11742. [82] J. Shen, G.Z. Liu, Y.F. Ji, Q. Liu, L. Cheng, K.C. Guan, M.C. Zhang, G.P. Liu, J. Xiong, J. Yang, W.Q. Jin, 2D MXene nanofilms with tunable gas transport channels, Adv. Funct. Mater. (2018) 1801511. [83] K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim, J.H. Choi, Y.T. Nam, Y. Gogotsi, H.T. Jung, Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration:Comparison with graphene oxide and MXenes, ACS Appl. Mater. Interfaces 9(2017) 44687-44694. [84] X.L. Wu, L. Hao, J.K. Zhang, X. Zhang, J.T. Wang, J.D. Liu, Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system, J. Membr. Sci. 515(2016) 175-188. [85] L. Hao, H.Q. Zhang, X.L. Wu, J.K. Zhang, J.T. Wang, Y.F. Li, Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport, Compos. A:Appl. Sci. Manuf. 100(2017) 139-149. [86] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Mgller, R. Schlçgl, J.M. Carlsson, Graphitic carbon nitride materials:Variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18(2008) 4893-4908. [87] F. Li, Y.Y. Qu, M.W. Zhao, Efficient helium separation of graphitic carbon nitride membrane, Carbon 95(2015) 51-57. [88] Y.J. Wang, L.B. Li, Y.Y. Wei, J. Xue, H. Chen, L. Ding, J. Caro, H.H. Wang, Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers, Angew. Chem. Int. Ed. 56(2017) 8974-8980. [89] Y.J. Wang, L.F. Liu, J. Xue, J.M. Hou, L. Ding, H.H. Wang, Enhanced water flux through graphitic carbon nanosheets membrane by incorporating polyacrylic acid, AIChE J. 64(2018) 2181-2188. [90] X. Gao, Y.M. Li, X.L. Yang, Y.N. Shang, Y. Wang, B.Y. Gao, Z.N. Wang, Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers, J. Mater. Chem. A 5(2017) 19875-19883. [91] Z.Z. Tian, S.F. Wang, Y.T. Wang, X.R. Ma, K.T. Cao, D.D. Peng, X.Y. Wu, H. Wu, Z.Y. Jiang, Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity, J. Membr. Sci. 514(2016) 15-24. [92] K.T. Cao, Z.Y. Jiang, X.S. Zhang, Y.M. Zhang, J. Zhao, R.S. Xing, S. Yang, C.Y. Gao, F.S. Pan, Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix, J. Membr. Sci. 490(2015) 72-83. [93] J. Wang, M.S. Li, S.Y. Zhou, A.L. Xue, Y. Zhang, Y.J. Zhao, J. Zhong, Q. Zhang, Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation, Sep. Purif. Technol. 188(2017) 24-37. [94] Y.Q. Wang, R.W. Ou, H.T. Wang, T.W. Xu, Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane, J. Membr. Sci. 475(2015) 281-289. [95] H.X. Zhao, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment, Appl. Catal. B Environ. 194(2016) 134-140. [96] C. Chen, J.M. Wang, D. Liu, C. Yang, Y.C. Liu, R.S. Ruoff, W.W. Lei, Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation, Nat. Commun. 9(2018) 1902. [97] Z.H. Qiao, S. Zhao, J.X. Wang, S.C. Wang, Z. Wang, M.D. Guiver, A highly permeable aligned montmorillonite mixed-matrix membrane for CO2 separation, Angew. Chem. Int. Ed. 55(2016) 9321-9325. [98] M.T. Zhao, Y.X. Wang, Q.L. Ma, Y. Huang, X. Zhang, J.F. Ping, Z.C. Zhang, Q.P. Lu, Y.F. Yu, H. Xu, Y.L. Zhao, H. Zhang, Ultrathin 2D metal-organic framework nanosheets, Adv. Mater. 27(2015) 7372-7378. [99] R. Makiura, O. Konovalov, Bottom-up assembly of ultrathin sub-micron size metal-organic framework sheets, Dalton Trans. 42(2013) 15931-15936. [100] J.F. Yu, B.R. Martin, A. Clearfield, Z.P. Luo, L.Y. Sun, One-step direct synthesis of layered double hydroxide single-layer nanosheets, Nanoscale 7(2015) 9448-9451. [101] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol. 10(2015) 459-464. [102] H. Li, L. Daukiya, S. Haldar, A. Lindblad, B. Sanyal, O. Eriksson, D. Aubel, S. Hajjar-Garreau, L. Simon, K. Leifer, Site-selective local fluorination of graphene induced by focused ion beam irradiation, Sci. Rep. 6(2016) 19719. [103] X.L. Lu, R.G. Wang, L.F. Hao, F. Yang, W.C. Jiao, P. Peng, F. Yuan, W.B. Liu, Oxidative etching of MoS2/WS2 nanosheets to their QDs by facile UV irradiation, Phys. Chem. Chem. Phys. 18(2016) 31211-31216. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[3] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[7] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[8] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[9] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[10] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[11] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[12] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[13] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[14] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[15] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||