[1] P.A. Alsop, The Cement Plant Operations Handbook, Emirates Printing Press, UAE, 2007. [2] W.H. Duda, Cement Data Book, Bauverlag GmbH, Wiesbaden und Berlin, Germany, 1985. [3] M. Wasilewski, J. Duda, Multicriteria optimisation of first-stage cyclones in the clinker burning system by means of numerical modelling and experimental research, Powder Technol. 289(2016) 143-158. [4] N.A. Madlool, R. Saidur, M.S. Hossain, N.A. Rahim, A critical review on energy use and savings in the cement industries, Renew. Sustain. Energy Rev. 15(2011) 2042-2060. [5] B. Klotz, New developments in precalciners and preheaters, in:XXXIX Conference IEEE/PCA Cement Industry Technical Conference, Pennsylvania, USA, 1997, pp. 255-280. [6] European IPPC Bureau, Reference Document on Best Available Techniques in Cement, Lime, and Magnesium Oxide Manufacturing Industries, 2013, http://eippcb.jrc.ec.evropa.eu/reference/BREF/CLM_Published_def.pdf. [7] J.I. Bhatty, Innovations in Portland Cement Manufacturing, Poland, Portland Cement Association, Poland, 2011. [8] M. Wasilewski, J. Duda, A. Duczkowska-Kądziel, Application of computational fluid dynamics to optimization of cyclone dust separators operated in the cement industry, Chemik 67(2013) 985-994. [9] K.E. Peray, Cement manufacture's handbook, Chemical Publishing Company, New York, 1979. [10] M. Wasilewski, L. Brar, Effect of the inlet duct angle on the performance of cyclone separators, Sep. Purif. Technol. 213(2018) 19-33. [11] R. Wolff, S. Alesi, S. Miller, Applying modern technology in a step by step approach to improve the capacity and efficiency of a preheater/calciner kiln system, in:XXXVⅡ IEEE Cement Industry Technical Conference, San Juan, Puerto Rico, 1995. [12] H.P. Elkjaer, Cyclone Separator, US Pat., 4848993(1987). [13] S. Bernardo, M. Mori, A.P. Peres, R.P. Dionísio, 3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles, Powder Technol. 162(2006) 190-200. [14] H. Zhang, R. Dewil, J. Degreve, J. Baeyens, The design of cyclonic pre-heaters in suspension cement kilns, Int. J. Sustain. Eng. 7(2014) 307-312. [15] H. Mikulcic, M. Vujanovic, M.S. Ashhab, N. Duic, Large eddy simulation of a twophase reacting swirl flow inside a cement cyclone, Energy 75(2014) 89-96. [16] F. Mariani, F. Risi, C. Grimaldi, Separation efficiency and heat exchange optimization in a cyclone, Sep. Purif. Technol. 179(2017) 393-402. [17] E. Kashani, A. Mohebbi, M.G. Heidari, CFD simulation of the preheater cyclone of a cement plant and the optimization of its performance using a combination of the design of experiments and multi-gene genetic programming, Powder Technol. 327(2018) 430-441. [18] M. Wasilewski, L.S. Brar, Optimization of the geometry of cyclone separators used in clinker burning process:A case study, Powder Technol. 313(2017) 293-302. [19] R. Dewil, J. Baeyens, B. Caerts, CFB cyclones at high temperature:operational results and design assessment, Particuology 6(2008) 149-156. [20] V. Bricout, M.Y. Louge, Measurements of cyclone performance under conditions analogous to pressurized circulating fluidization, Chem. Eng. Sci. 59(2004) 3059-3070. [21] K. Tuzla, J. Chen, Performance of A Cyclone under High Solid Loadings, AIChE Symposium Series, 88, 1992. [22] H.F. Meier, K. Ropelato, M. Mori, Computational fluid dynamics CFD for cyclone evaluation and design, ZKG Int. 55(2002) 58-64. [23] L.K. Wang, N.C. Pereira, Y.T. Hung, Air Pollution Control Engineering, New Jersey, USA, 2004. [24] K. Abedi, T. Zarei, CFD simulation of the cyclone of the Farsnov cement Plant, in:The 9th International Chemical Engineering Congress & Exhibition, Iran, 2015. [25] Fluent 6.3.26 Users' Guid, Fluent, Inc., 2006. [26] B.E. Launder, G.J. Reece, W. Rodi, Progress in the development of a Reynoldsstress turbulence closure, J. Fluid Mech. 68(1975) 537-566. [27] G. Wan, G. Sun, X. Xue, M. Shi, Solids concentration simulation of different size particles in a cyclone separator, Powder Technol. 183(2008) 94-104. [28] B. Wang, D.L. Xu, K.W. Chu, A.B. Yu, Numerical study of gas-solid flow in a cyclone separator, Appl. Math. Model. 30(2006) 1326-1342. [29] Y. Su, A. Zheng, B. Zhao, Numerical simulation of effect of inlet configuration on square cyclone separator performance, Powder Technol. 210(2011) 293-303. [30] J.J.H. Houben, S. Pirker, CFD simulations of pressure drop and velocity field in a cyclone separator with central vortex stabilization rod, J. Appl. Fluid. Mech. 9(2016) 487-499. [31] M. Wasilewski, Analysis of the effects of temperature and the share of solid and gas phases on the process of separation in a cyclone suspension preheater, Sep. Purif. Technol. 168(2016) 114-123. [32] P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer-Verlag, Berlin/Heidelberg, 2006. [33] B. Vreman, B. Geurts, H. Kuerten, Large eddy simulation of turbulent mixing layer, J. Fluid Mech. 339(1997) 357-390. [34] I. Karagoz, F. Kaya, CFD investigation of the flow and heat transfer characteristics in a tangential inlet cyclone, Int. J. Heat Mass Transf. 34(2007) 1119-1126. [35] L. Ma, D.B. Ingham, X. Wen, Numerical modeling of the fluid and particle penetration through small sampling cyclones, J. Aerosol Sci. 31(2000) 1097-1119. [36] M.S. Shin, H.S. Kim, D.S. Jang, J.D. Chung, M. Bohnet, A numerical and experimental study on a high efficiency cyclone dust separator for high temperature and pressurized environments, Appl. Therm. Eng. 25(2005) 1821-1835. [37] D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, California, 2006. [38] F.R. Menter, Best Practice:Scale-Resolving Simulations in ANSYS CFD, ANSYS Germany GmbH, Otterfing, 2012. [39] A.C. Hoffmann, L.E. Stein, Gas Cyclones and Swirl Tubes Principles, Design, and Operation, Springer-Verlag, Berlin Heidelberg, 2008. [40] T.G. Chuah, J. Gimbun, T.S.Y. Choong, A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics, Powder Technol. 162(2006) 126-132. [41] K. Elsayed, C. Lacor, The effect of cyclone inlet dimensions on the flow pattern and performance, Appl. Math. Model. 35(2011) 1952-1968. [42] L.S. Brar, R.P. Sharma, K. Elsayed, The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone, Powder Technol. 286(2015) 668-677. [43] K.W. Chu, B. Wang, A. Vince, A.B. Yu, G.D. Barnett, P.J. Barnett, CFD-DEM study of the effect of particle density distribution on the multiphase flow and performance of dense medium cyclone, Miner. Eng. 22(2009) 893-909. [44] K.W. Chu, B. Wang, A.B. Yu, A. Vince, CFD-DEM modelling of multiphase flow in dense medium cyclones, Powder Technol. 193(2009) 235-247. [45] H. Safikhani, M. Akhavan-Behabadi, M. Shams, M.H. Rahimyan, Numerical simulation of flow field in three types of standard cyclone separators, Adv. Powder Technol. 21(2010) 435-442. [46] D. Misiulia, A.G. Andersson, T.S. Lundstrom, Computational investigation of an industrial cyclone separator with helical-roof inlet, Chem. Eng. Technol. 38(2015) 1425-1434. [47] M. Wasilewski, Analysis of the effect of counter-cone location on cyclone separator efficiency, Sep. Purif. Technol. 179(2017) 236-247. [48] G. Gronald, J.J. Derksen, Simulating turbulent swirling flow in a gas cyclone:a comparison of various modeling approaches, Powder Technol. 205(2011) 160-171. [49] S. Pirker, C. Goniva, C. Kloss, S. Puttinger, J. Houben, S. Schneiderbauer, Application of a hybrid lattice Boltzmann-finite volume turbulence model to cyclone short-cut flow, Powder Technol. 235(2013) 572-580. [50] L.S. Brar, K. Elsayed, Analysis and optimization of multi-inlet gas cyclones using large eddy simulation and artificial neural network, Powder Technol. 311(2017) 465-483. [51] L.S. Brar, K. Elsayed, Analysis and optimization of cyclone separators with eccentric vortex finders using large eddy simulation and artificial neural network, Sep. Purif. Technol. 207(2018) 269-283. [52] M.D. Slack, R.O. Prasad, A. Bakker, F. Boysan, Advances in cyclone modelling using unstructured grids, Chem. Eng. Res. Des. 78(2000) 1098-1104. [53] H. Shalaby, K. Wozniak, G. Wozniak, Numerical calculation of particle-laden cyclone separator flow using LES, Eng. Appl. Comput. Fluid Mech. 2(2008) 382-392. [54] K. Elsayed, C. Lacor, The effect of the dust outlet geometry on the performance and hydrodynamics of gas cyclones, Comput. Fluids 68(2012) 134-147. [55] G. Borsuk, J. Wydrych, B. Dobrowolski, Modification of the inlet to the tertiary air duct in the cement kiln installation, Chem. Process. Eng. 37(2016) 517-527. [56] F.J. de Souza, R. de Vasconcelos Salvo, D. de Moro Martins, Simulation of the performance of small cyclone separators through the use of Post Cyclones (PoC) and annular overflow ducts, Sep. Purif. Technol. 142(2015) 71-82. [57] M. Azadi, M. Azadi, A. Mohebbi, A CFD study of the effect of cyclone size on its performance parameters, J. Hazard. Mater. 182(2010) 835-841. [58] ANSYS, ANSYS CFX14.0, Solver Theory Documentation, ANSYS, Inc., 2011. [59] H. Safikhani, Modeling and multi-objective Pareto optimization of new cyclone separators using CFD, ANNs and NSGA Ⅱ algorithm, Adv. Powder Technol. 27(2016) 2277-2284. [60] S.K. Shukla, P. Shukla, P. Ghosh, The effect of modeling of velocity fluctuations on prediction of collection efficiency of cyclone separators, Appl. Math. Model. 37(2013) 5774-5789. [61] A. Raoufi, M. Shams, M. Farzaneh, R. Ebrahimi, Numerical simulation and optimization of fluid flow in cyclone vortex finder, Chem. Eng. Process. 47(2008) 128-137. [62] J. Gimbun, T.G. Chuah, T.S.Y. Choong, A. Fakhru'l-Razi, Prediction of the effects of cone tip diameter on the cyclone, J. Aerosol Sci. 36(2005) 1056-1065. [63] A. Ogawa, Separation of particles from air and gasses, CRC Press, Boca Raton, Florida, USA, 1984. [64] J.J. Derksen, H.E.A. Van den Akker, Simulation of vortex core precession in a reverse flow cyclone, AIChE J. 46(2000) 1317-1331. |