[1] C.I.C. Pinheiro, J.L. Fernandes, L. Domingues, A.J.S. Chambel, I. Gra?a, N.M.C. Oliveira, H.S. Cerqueira, F.R. Ribeiro, Fluid catalytic cracking (FCC) process modeling, simulation, and control, Ind. Eng. Chem. Res. 51 (2012) 1–29 [2] R. Sahu, B.J. Song, J.S. Im, Y P. Jeon, C.W. Lee, A review of recent advances in catalytic hydrocracking of heavy residues, J. Ind. Eng. Chem. 27 (2015) 12–24 [3] R. Prajapati, K. Kohli, S.K. Maity, Slurry phase hydrocracking of heavy oil and residue to produce lighter fuels: An experimental review, Fuel 288 (2021) 119686 [4] C.S. Laxminarasimhan, R.P. Verma, P.A. Ramachandran, Continuous lumping model for simulation of hydrocracking, AIChE J. 42 (1996) 2645–2653 [5] T.C. Ho, Kinetic modeling of large-scale reaction systems, Catal. Rev.: Sci. Eng. 50 (2008) 287–378 [6] J. Ancheyta, Deactivation of Heavy Oil Hydroprocessing Catalysts, John Wiley & Sons: Hoboken, New Jersey, 2016 [7] M.T. Klein, G. Hou, R. Bertolacini, L.J. Broadbelt, A. Kumar, Molecular Modeling in Heavy Hydrocarbon Conversions, CRC Press: Boca Raton, Florida, 2005 [8] R. Van de Vijver, B.R. Devocht, K.M. Van Geem, J.W. Thybaut, G.B. Marin, Challenges and opportunities for molecule-based management of chemical processes, Curr. Opin. Chem. Eng. 13 (2016) 142–149 [9] L.P. de Oliveira, D. Hudebine, D. Guillaume, J.J. Verstraete, A review of kinetic modeling methodologies for complex processes, Oil Gas Sci. Technol. 71 (2016) 45 [10] Y. Ren, Z. Liao, J. Sun, B. Jiang, J. Wang, Y. Yang, Q. Wu, Molecular reconstruction: recent progress toward composition modeling of petroleum fractions, Chem. Eng. J. 357 (2019) 761–775 [11] M. Neurock, C. Libanati, A. Nigam, M.T. Klein, Monte Carlo simulation of complex reaction systems: molecular structure and reactivity in modelling heavy oils, Chem. Eng. Sci. 45 (1990) 2083–2088 [12] R.J. Quann, S.B. Jaffe, Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures, Ind. Eng. Chem. Res. 31 (1992) 2483–2497 [13] B. Peng, Molecular modelling of petroleum processes, Ph. D. Thesis, University of Manchester, 1999 [14] D. Hudebine, C. Vera, F. Wahl, J. Verstraete, Molecular representation of hydrocarbon mixtures from overall petroleum analyses, AIChE Spring Meeting, New Orleans, 2002 [15] M. Neurock, A. Nigam, D. Trauth, M.T. Klein, Molecular representation of complex hydrocarbon feedstocks through efficient characterization and stochastic algorithms, Chem. Eng. Sci. 49 (1994) 4153–4177 [16] J.M. Sheremata, M.R. Gray, H.D. Dettman, W.C. McCaffrey, Quantitative molecular representation and sequential optimization of athabasca asphaltenes, Energy Fuels 18 (2004) 1377–1384 [17] C.U. Deniz, M. Yasar, M.T. Klein, A new extended structural parameter set for stochastic molecular reconstruction: application to asphaltenes, Energy Fuels 31 (2017) 7919–7931 [18] D.M. Trauth, S.M. Stark, T.F. Petti, M. Neurock, M.T. Klein, Representation of the molecular structure of petroleum resid through characterization and Monte Carlo modeling, Energy Fuels 8 (1994) 576–580 [19] D.M. Campbell, M.T. Klein, Construction of a molecular representation of a complex feedstock by Monte Carlo and quadrature methods, Appl. Catal. A: Gen. 160 (1997) 41–54 [20] D M. Campbell, C. Bennett, Z. Hou, M.T. Klein, Attribute-based modeling of resid structure and reaction, Ind. Eng. Chem. Res. 48 (2009) 1683–1693 [21] K. Wang, S. Li, Modified molecular matrix model for predicting molecular composition of naphtha, Chin. J. Chem. Eng. 25 (2017) 1856–1862 [22] K.M. Van Geem, D. Hudebine, M.F. Reyniers, F. Wahl, J.J. Verstraete, G.B. Marin, Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices, Comput. Chem. Eng. 31 (2007) 1020–1034 [23] S.B. Jaffe, H. Freund, W.N. Olmstead, Extension of structure-oriented lumping to vacuum residua, Ind. Eng. Chem. Res. 44 (2005) 9840–9852 [24] L. Tian, B. Shen, J. Liu, Building and application of delayed coking structure-oriented lumping model, Ind. Eng. Chem. Res. 51 (2012) 3923–3931 [25] D. Hudebine, J.J. Verstraete, Molecular reconstruction of LCO gasoils from overall petroleum analyses, Chem. Eng. Sci. 59 (2004) 4755–4763 [26] A. Alvarez-Majmutov, J. Chen, R. Gieleciak, D. Hager, N. Heshka, S. Salmon, Deriving the molecular composition of middle distillates by integrating statistical modeling with advanced hydrocarbon characterization, Energy Fuels 28 (2014) 7385–7393 [27] M.L. Abelairas, L.P. de Oliveira, J.J. Verstraete, Application of Monte Carlo techniques to LCO gas oil hydrotreating: molecular reconstruction and kinetic modelling, Catal. Today 271 (2016) 188–198 [28] J.J. Verstraete, N. Revellin, H. Dulot, D. Hudebine, Molecular reconstruction of vacuum gasoils, Prepr. Pap. Am. Chem. Soc., Div. Fuel Chem. 49 (2004) 20–21 [29] A. Alvarez-Majmutov, J. Chen, R. Gieleciak, Molecular-level modeling and simulation of vacuum gas oil hydrocracking, Energy Fuels 30 (2016) 138–148 [30] A. Alvarez-Majmutov, J. Chen, Stochastic modeling and simulation approach for industrial fixed-bed hydrocrackers, Ind. Eng. Chem. Res. 56 (2017) 6926–6938 [31] J.J. Verstraete, P. Schnongs, H. Dulot, D. Hudebine, Molecular reconstruction of heavy petroleum residue fractions, Chem. Eng. Sci. 65 (2010) 304–312 [32] L.P. de Oliveira, A.T. Vazquez, J.J. Verstraete, M. Kolb, Molecular reconstruction of petroleum fractions: application to vacuum residues from different origins, Energy Fuels 27 (2013) 3622–3641 [33] A. Alvarez-Majmutov, R. Gieleciak, J. Chen, Modeling the molecular composition of vacuum residue from oil sand bitumen, Fuel 241 (2019) 744–752 [34] A. Alvarez-Majmutov, R. Gieleciak, J. Chen, Deriving the molecular composition of vacuum distillates by integrating statistical modeling and detailed hydrocarbon characterization, Energy Fuels 29 (2015) 7931–7940 [35] T. F. Petti, D. M. Trauth, S. M. Stark, M. Neurock, M. Yasar, M.T. Klein, CPU issues in the representation of the molecular structure of petroleum resid through characterization, reaction, and Monte Carlo modeling, Energy Fuels 8 (1994) 570–575 [36] L.P. de Oliveira, J.J. Verstraete, M. Kolb, Molecule-based kinetic modeling by Monte Carlo methods for heavy petroleum conversion, Sci. China-Chem. 56 (2013) 1608–1622 [37] C.U. Deniz, M. Yasar, M.T. Klein, Stochastic reconstruction of complex heavy oil molecules using an artificial neural network, Energy Fuels 31 (2017) 11932–11938 [38] C.U. Deniz, S.H.O. Yasar, M. Yasar, M.T. Klein, Effect of boiling point and density prediction methods on stochastic reconstruction, Energy Fuels 32 (2018) 3344–3355 [39] C.E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 623–656 [40] S. Guiasu, A. Shenitzer, The principle of maximum entropy, The Mathemat. Intelli. 7(1985) 42–48 [41] S.P. Pyl, K.M. Van Geem, M.F. Reyniers, G.B. Marin, Molecular reconstruction of complex hydrocarbon mixtures: An application of principal component analysis, AIChE J. 56 (2010) 3174–3188 [42] D. Hudebine, J.J. Verstraete, Reconstruction of petroleum feedstocks by entropy maximization. Application to FCC gasolines, Oil Gas Sci. Technol. 66 (2011) 437–460 [43] Y. Pan, B. Yang, X. Zhou, Feedstock molecular reconstruction for secondary reactions of fluid catalytic cracking gasoline by maximum information entropy method, Chem. Eng. J. 281 (2015) 945–952 [44] S. Feng, C. Cui, K. Li, L. Zhang, Q. Shi, S. Zhao, C. Xu, Molecular composition modelling of petroleum fractions based on a hybrid structural unit and bond-electron matrix (SU-BEM) framework, Chem. Eng. Sci. 201 (2019) 145–156 |