[1] W. Hong, X.R. Shen, F.Z. Wang, X. Feng, J. Li, Z.D. Wei, A bimodal-pore strategy for synthesis of Pt3Co/C electrocatalyst toward oxygen reduction reaction, Chem Commun (Camb) 57 (35) (2021) 4327–4330 [2] J.S. Liang, N. Li, Z.L. Zhao, L. Ma, X.M. Wang, S.Z. Li, X. Liu, T.Y. Wang, Y.P. Du, G. Lu, J.T. Han, Y.H. Huang, D. Su, Q. Li, Tungsten-doped L10 -PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode, Angew. Chem. Int. Ed. 58 (43) (2019) 15471–15477 [3] Y. Nie, L. Li, Z.D. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem Soc Rev 44 (8) (2015) 2168–2201 [4] S. Holdcroft, Fuel cell catalyst layers: A polymer science perspective, Chem. Mater. 26 (1) (2014) 381–393 [5] Debe MK, Electrocatalyst approaches and challenges for automotive fuel cells, Nature 486 (7401) (2012) 43–51 [6] J.R. Li, S. Sharma, K.C. Wei, Z.T. Chen, D. Morris, H.H. Lin, C. Zeng, M.F. Chi, Z.Y. Yin, M. Muzzio, M.Q. Shen, P. Zhang, A.A. Peterson, S.H. Sun, Anisotropic strain tuning of L10 ternary nanoparticles for oxygen reduction, J Am Chem Soc 142 (45) (2020) 19209–19216 [7] Gamler JTL, Ashberry HM, Skrabalak SE, Koczkur KM, Random alloyed versus intermetallic nanoparticles: A comparison of electrocatalytic performance, Adv Mater (2018) e1801563 [8] Y.C. Yan, J.S. Du, K.D. Gilroy, D.R. Yang, Y.N. Xia, H. Zhang, Intermetallic nanocrystals: Syntheses and catalytic applications, Adv. Mater. 31 (4) (2019) 1806746 [9] J. Kim, Y. Lee, S.H. Sun, Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction, J Am Chem Soc 132 (14) (2010) 4996–4997 [10] D.L. Wang, H.L. Xin, R. Hovden, H.S. Wang, Y.C. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abru?a, Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat Mater 12 (1) (2013) 81–87 [11] Q. Li, L.H. Wu, G. Wu, D. Su, H. Lv, S. Zhang, W.L. Zhu, A. Casimir, H.Y. Zhu, A. Mendoza-Garcia, S.H. Sun, New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid, Nano Lett 15 (4) (2015) 2468–2473 [12] Y. Xiong, L. Xiao, Y. Yang, F.J. DiSalvo, H.D. Abruna, High-loading intermetallic Pt3Co/C core-shell nanoparticles as enhanced activity electrocatalysts toward the oxygen reduction reaction (ORR), Chemistry of Materials 30 (2018) 1532–1539 [13] S.Y. Zhu, X. Wang, E.G. Luo, L.T. Yang, Y.Y. Chu, L.Q. Gao, Z. Jin, C.P. Liu, J.J. Ge, W. Xing, Stabilized Pt cluster-based catalysts used as low-loading cathode in proton-exchange membrane fuel cells, ACS Energy Lett. 5 (9) (2020) 3021–3028 [14] Z.G. Qi, A. Kaufman, Low Pt loading high performance cathodes for PEM fuel cells, J. Power Sources 113 (1) (2003) 37–43 [15] N. Nikolic, L. Pavlovic, M. Pavlovic, K. Popov, Effect of temperature on the electrodeposition of disperse copper deposits, J. Serbian Chem. Soc. 72 (12) (2007) 1369–1381 [16] D.Y. Chung, S.W. Jun, G. Yoon, S.G. Kwon, D.Y. Shin, P. Seo, J.M. Yoo, H. Shin, Y.H. Chung, H. Kim, B.S. Mun, K.S. Lee, N.S. Lee, S.J. Yoo, D.H. Lim, K. Kang, Y.E. Sung, T. Hyeon, Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction, J Am Chem Soc 137 (49) (2015) 15478–15485 [17] K.E. Elkins, T.S. Vedantam, J.P. Liu, H. Zeng, S.H. Sun, Y. Ding, Z.L. Wang, Ultrafine FePt nanoparticles prepared by the chemical reduction method, Nano Lett. 3 (12) (2003) 1647–1649 [18] Z.R. Dai, S.H. Sun, Z.L. Wang, Phase transformation, coalescence, and twinning of monodisperse FePt nanocrystals, Nano Lett. 1 (8) (2001) 443–447 [19] Y.Z. Hu, T. Shen, X.R. Zhao, J.J. Zhang, Y. Lu, J. Shen, S.F. Lu, Z.K. Tu, H.L. Xin, D.L. Wang, Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis, Appl. Catal. B: Environ. 279 (2020) 119370 [20] W.N. Ren, W.J. Zang, H.F. Zhang, J.L. Bian, Z.F. Chen, C. Guan, C.W. Cheng, PtCo bimetallic nanoparticles encapsulated in N-doped carbon nanorod arrays for efficient electrocatalysis, Carbon 142 (2019) 206–216 [21] S. Wang, L.F. Xiong, J.L. Bi, X.J. Zhang, G. Yang, S.C. Yang, Structural and electronic stabilization of PtNi concave octahedral nanoparticles by P doping for oxygen reduction reaction in alkaline electrolytes, ACS Appl. Mater. Interfaces 10 (32) (2018) 27009–27018 [22] Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR, Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces, Science 343 (6177) (2014) 1339–1343 [23] J.P. Stassi, P.D. Zgolicz, S.R. de Miguel, O.A. Scelza, Formation of different promoted metallic phases in PtFe and PtSn catalysts supported on carbonaceous materials used for selective hydrogenation, J. Catal. 306 (2013) 11–29 [24] R.P. Zhao, Y. Liu, C. Liu, G.R. Xu, Y. Chen, Y.W. Tang, T.H. Lu, Pd@Pt core–shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction, J. Mater. Chem. A 2 (48) (2014) 20855–20860 [25] S.X. Bai, L.Z. Bu, Q. Shao, X. Zhu, X.Q. Huang, Multicomponent Pt-based zigzag nanowires as selectivity controllers for selective hydrogenation reactions, J Am Chem Soc 140 (27) (2018) 8384–8387 [26] X.X. Zhu, L. Huang, M. Wei, P. Tsiakaras, P.K. Shen, Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis, Appl. Catal. B: Environ. 281 (2021) 119460 [27] Park J, Kanti Kabiraz M, Kwon H, Park S, Baik H, Choi SI, Lee K, Radially phase segregated PtCu@PtCuNi Dendrite@Frame nanocatalyst for the oxygen reduction reaction, ACS Nano 11 (11) (2017) 10844–10851 [28] Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovi? NM, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability, Science 315 (5811) (2007) 493–497 [29] V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G.F. Wang, P.N. Ross, N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat Mater 6 (3) (2007) 241–247 |