[1] K. Moller, T. Bein, Mesoporosity-A new dimension for zeolites, Chem. Soc. Rev. 42(2013) 3689-3707. [2] S. van Donk, A.H. Janssen, J.H. Bitter, K.P. de Jong, Generation, characterization, and impact of mesopores in zeolite catalysts, Catal. Rev. 45(2003) 297-319. [3] A. Corma, From microporous to mesoporous molecular sieve materials and their use in catalysis, Catal. Rev. 97(1997) 2373-2420. [4] K. Na, C. Jo, J. Kim, K. Cho, J. Jung, Y. Seo, R.J. Messinger, B.F. Chmelka, R. Ryoo, Directing zeolite structures into hierarchically nanoporous architectures, Science 333(2011) 328-332. [5] M. Choi, H.S. Cho, R. Srivastava, C. Venkatesan, D.-H. Choi, R. Ryoo, Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity, Nat. Mater. 5(2006) 718. [6] V. Valtchev, G. Majano, S. Mintova, J. Perez-Ramirez, Tailored crystalline microporous materials by post-synthesis modification, Chem. Soc. Rev. 42(2013) 263-290. [7] A. Corma, V. Fornes, S.B. Pergher, T.L.M. Maesen, J.G. Buglass, Delaminated zeolite precursors as selective acidic catalysts, Nature 396(1998) 353. [8] S. Maheshwari, E. Jordan, S. Kumar, F.S. Bates, R.L. Penn, D.F. Shantz, M. Tsapatsis, Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor, J. Am. Chem. Soc. 130(2008) 1507-1516. [9] M. Milina, S. Mitchell, Z.D. Trinidad, D. Verboekend, J. Perez-Ramirez, Decoupling porosity and compositional effects on desilicated ZSM-5 zeolites for optimal alkylation performance, Catal. Sci. Technol. 2(2012) 759-766. [10] J. Wang, Z. Zhong, K. Ding, B. Zhang, A. Deng, M. Min, P. Chen, R. Ruan, Successive desilication and dealumination of HZSM-5 in catalytic conversion of waste cooking oil to produce aromatics, Energy Convers. Manag. 147(2017) 100-107. [11] D. Verboekend, S. Mitchell, M. Milina, J.C. Groen, J. Pérez-Ramírez, Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication, J. Phys. Chem. C 115(2011) 14193-14203. [12] Y. Song, C. Sun, W. Shen, L. Lin, Hydrothermal post-synthesis of HZSM-5 zeolite to enhance the coke-resistance of Mo/HZSM-5 catalyst for methane dehydroaromatization reaction:Reconstruction of pore structure and modification of acidity, Appl. Catal. A Gen. 317(2007) 266-274. [13] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts, Nature 461(2009) 246-249. [14] J. Jung, C. Jo, K. Cho, R. Ryoo, Zeolite nanosheet of a single-pore thickness generated by a zeolite-structure-directing surfactant, J. Mater. Chem. 22(2012) 4637-4640. [15] K. Na, M. Choi, W. Park, Y. Sakamoto, O. Terasaki, R. Ryoo, Pillared MFI zeolite nanosheets of a single-unit-cell thickness, J. Am. Chem. Soc. 132(2010) 4169-4177. [16] X. Guan, N. Li, G. Wu, J. Chen, F. Zhang, N. Guan, Para-selectivity of modified HZSM-5 zeolites by nitridation for ethylation of ethylbenzene with ethanol, J. Mol. Catal. A Chem. 248(2006) 220-225. [17] C. Zhang, Z. Xu, K. Wan, Q. Liu, Synthesis, characterization and catalytic properties of nitrogen-incorporated ZSM-5 molecular sieves with bimodal pores, Appl. Catal. A Gen. 258(2004) 55-61. [18] J.-H. Lyu, H.-L. Hu, J.-Y. Rui, Q.-F. Zhang, J. Cen, W.-W. Han, Q.-T. Wang, X.-K. Chen, Z.-Y. Pan, X.-N. Li, Nitridation:A simple way to improve the catalytic performance of hierarchical porous ZSM-5 in benzene alkylation with methanol, Chin. Chem. Lett. 28(2017) 482-486. [19] B. Li, K. Leng, Y. Zhang, J.J. Dynes, J. Wang, Y. Hu, D. Ma, Z. Shi, L. Zhu, D. Zhang, Y. Sun, M. Chrzanowski, S. Ma, Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions, J. Am. Chem. Soc. 137(2015) 4243-4248. [20] B. Liu, Q. Duan, C. Li, Z. Zhu, H. Xi, Y. Qian, Template synthesis of the hierarchically structured MFI zeolite with nanosheet frameworks and tailored structure, New J. Chem. 38(2014) 4380-4387. [21] C.A. Emeis, Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts, J. Catal. 141(1993) 347-354. [22] W. Park, D. Yu, K. Na, K.E. Jelfs, B. Slater, Y. Sakamoto, R. Ryoo, Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets, Chem. Mater. 23(2011) 5131-5137. [23] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984), Pure Appl. Chem. 57(1985) 603-619. [24] B. Liu, L. Zheng, Z. Zhu, C. Li, H. Xi, Y. Qian, Hierarchically structured beta zeolites with intercrystal mesopores and the improved catalytic properties, Appl. Catal. A Gen. 470(2014) 412-419. [25] B. Liu, Y. Ren, Q. Duan, F. Chen, H. Xi, Y. Qian, Facile synthesis of mesoporous aluminosilicates constructed with crystalline microporous frameworks, Appl. Surf. Sci. 279(2013) 55-61. [26] B. Liu, C. Li, Y. Ren, Y. Tan, H. Xi, Y. Qian, Direct synthesis of mesoporous ZSM-5 zeolite by a dual-functional surfactant approach, Chem. Eng. J. 210(2012) 96-102. [27] T.S. Glazneva, N.S. Kotsarenko, E.A. Paukshtis, Surface acidity and basicity of oxide catalysts:From aqueous suspensions to in situ measurements, Kinet. Catal. 49(2008) 859-867. [28] A. Vimont, F. Thibault-Starzyk, J.C. Lavalley, Infrared spectroscopic study of the acidobasic properties of beta zeolite, J. Phys. Chem. B 104(2000) 286-291. [29] J. Gao, Y. Zheng, G.B. Fitzgerald, J. de Joannis, Y. Tang, I.E. Wachs, S.G. Podkolzin, Structure of Mo2Cx and Mo4Cx molybdenum carbide nanoparticles and their anchoring sites on ZSM-5 zeolites, J. Phys. Chem. C 118(2014) 4670-4679. [30] V. Agarwal, G.W. Huber, W.C. Conner, S.M. Auerbach, DFT study of nitrided zeolites:Mechanism of nitrogen substitution in HY and silicalite, J. Catal. 269(2010) 53-63. [31] K. Narasimharao, M. Hartmann, H.H. Thiel, S. Ernst, Novel solid basic catalysts by nitridation of zeolite beta at low temperature, Microporous Mesoporous Mater. 90(2006) 377-383. [32] R. Astala, S.M. Auerbach, The properties of methylene-and amine-substituted zeolites from first principles, J. Am. Chem. Soc. 126(2004) 1843-1848. [33] P. Morales-Pacheco, F. Alvarez, L. Bucio, J.M. Domínguez, Synthesis and structural properties of zeolitic nanocrystals II:FAU-type zeolites, J. Phys. Chem. C 113(2009) 2247-2255. [34] H. Li, B. Xu, B. Deng, X. Yan, Y. Zheng, Epoxidation of 1-hexene with hydrogen peroxide over nitrogen-incorporated TS-1 zeolite, Catal. Commun. 46(2014) 224-227. [35] G. Wu, X. Wang, Y. Yang, L. Li, G. Wang, N. Guan, Confirmation of NH species in the framework of nitrogen-incorporated ZSM-5 zeolite by experimental and theoretical studies, Microporous Mesoporous Mater. 127(2010) 25-31. [36] M. Milina, S. Mitchell, N.-L. Michels, J. Kenvin, J. Pérez-Ramírez, Interdependence between porosity, acidity, and catalytic performance in hierarchical ZSM-5 zeolites prepared by post-synthetic modification, J. Catal. 308(2013) 398-407. [37] H. Jin, M.B. Ansari, E.-Y. Jeong, S.-E. Park, Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5, J. Catal. 291(2012) 55-62. [38] B. Yuan, Y. Li, Z. Wang, F. Yu, C. Xie, S. Yu, A novel Brønsted-Lewis acidic catalyst based on heteropoly phosphotungstates:Synthesis and catalysis in benzylation of p-xylene with benzyl alcohol, Mol. Catal. 443(2017) 110-116. [39] L. Emdadi, S.C. Oh, Y. Wu, S.N. Oliaee, Y. Diao, G. Zhu, D. Liu, The role of external acidity of meso-/microporous zeolites in determining selectivity for acidcatalyzed reactions of benzyl alcohol, J. Catal. 335(2016) 165-174. |