Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 2026-2036.DOI: 10.1016/j.cjche.2019.01.005
Previous Articles Next Articles
Zhenyuan Yin1,2, Praveen Linga1
Received:
2018-11-21
Revised:
2018-12-16
Online:
2019-12-04
Published:
2019-09-28
Contact:
Praveen Linga
Zhenyuan Yin1,2, Praveen Linga1
通讯作者:
Praveen Linga
Zhenyuan Yin, Praveen Linga. Methane hydrates: A future clean energy resource[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2026-2036.
Zhenyuan Yin, Praveen Linga. Methane hydrates: A future clean energy resource[J]. 中国化学工程学报, 2019, 27(9): 2026-2036.
[1] World Energy Outlook, International Energy Agency, 2017. [2] Y.F. Makogon, Hydrates of Hydrocarbon, PennWell Publishing Company, USA, 1997. [3] E.D. Sloan Jr., Fundamental principles and applications of natural gas hydrates, Nature 426(2003) 353. [4] J.A. Ripmeester, C.I. Ratcliffe, Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates:structure, cage occupancy, and hydration number, J. Phys. Chem. 92(1988) 337-339. [5] K.A. Udachin, H. Lu, G.D. Enright, C.I. Ratcliffe, J.A. Ripmeester, N.R. Chapman, et al., Single crystals of naturally occurring gas hydrates:The structures of methane and mixed hydrocarbon hydrates, Angew. Chem. Int. Ed. 46(2007) 8220-8222. [6] Y.P. Handa, A calorimetric study of naturally occurring gas hydrates, Ind. Eng. Chem. Res. 27(1988) 872-874. [7] C.A. Koh, Towards a fundamental understanding of natural gas hydrates, Chem. Soc. Rev. 31(2002) 157-167. [8] A.V. Milkov, Global estimates of hydrate-bound gas in marine sediments:How much is really out there? Earth Sci. Rev. 66(2004) 183-197. [9] B. Buffett, D. Archer, Global inventory of methane clathrate:Sensitivity to changes in the deep ocean, Earth Planet. Sci. Lett. 227(2004) 185-199. [10] J.B. Klauda, S.I. Sandler, Global distribution of methane hydrate in ocean sediment, Energy Fuel 19(2005) 459-470. [11] B.A. Buffett, O.Y. Zatsepina, Formation of gas hydrate from dissolved gas in natural porous media, Mar. Geol. 164(2000) 69-77. [12] B.A. Buffett, Clathrate hydrates, Annu. Rev. Earth Planet. Sci. 28(2000) 477-507. [13] R. Boswell, T.S. Collett, Current perspectives on gas hydrate resources, Energy Environ. Sci. 4(2011) 1206-1215. [14] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.-S. Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy 162(2016) 1633-1652. [15] R. Boswell, T. Collett, The gas hydrates resource pyramid, Fire in the Ice, National Energy Technology Laboratory, 6, 2006, pp. 1-4. [16] G.J. Moridis, T.S. Collett, R. Boswell, M. Kurihara, M.T. Reagan, C. Koh, et al., Toward Production From Gas Hydrates:Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential, SPE Reserv. Eval. Eng. 12(2009) 745-771. [17] Y. Song, L. Yang, J. Zhao, W. Liu, M. Yang, Y. Li, et al., The status of natural gas hydrate research in China:A review, Renew. Sustain. Energy Rev. 31(2014) 778-791. [18] T.-M. Guo, B.-H. Wu, Y.-H. Zhu, S.-S. Fan, G.-J. Chen, A review on the gas hydrate research in China, J. Pet. Sci. Eng. 41(2004) 11-20. [19] Z. Lin, H. Pan, H. Fang, W. Gao, D. Liu, High-altitude well log evaluation of a permafrost gas hydrate reservoir in the Muli area of Qinghai, China, Sci. Rep. 8(2018) 12596. [20] X. Zhao, J. Deng, J. Li, C. Lu, J. Song, Gas hydrate formation and its accumulation potential in Mohe permafrost, China, Mar. Pet. Geol. 35(2012) 166-175. [21] N.Y. Wu, H.Q. Zhang, X. Su, S.X. Yang, G. Zhang, J.Q. Liang, et al., High concentrations of hydrate in disseminated forms found in very fine-grained sediments of Shenhu area, South China Sea, Terra Nostra 1-2(2007) 236-237. [22] N.Y. Wu, S.X. Yang, H.Q. Zhang, J.Q. Liang, H.B. Wang, X. Su, et al., Preliminary discussion on gas hydrate reservoir system of Shenhu Area, North Slope of South China Sea, The 6th International Conference on Gas Hydrate. Vancouver, British Columbia, Canada, 2008. [23] N.Y. Wu, H.Q. Zhang, S.X. Yang, J.Q. Liang, H.B. Wang, Preliminary discussion on Natural Gas Hydrate (NGH) reservoir system of Shenhu area, north slope of South China Sea, Nat. Gas Ind. 27(2007) 1-6. [24] Z. Tan, G. Pan, P. Liu, Focus on the development of natural gas hydrate in China, Sustainability 8(2016) 520. [25] X. Wang, L. Pan, H.C. Lau, M. Zhang, L. Li, Q. Zhou, Reservoir volume of gas hydrate stability zones in permafrost regions of China, Appl. Energy 225(2018) 486-500. [26] W.F. Waite, C.D. Ruppel, T.S. Collett, P. Schultheiss, M. Holland, K.M. Shukla, et al., Multi-measurement approach for establishing the base of gas hydrate occurrence in the Krishna-Godavari Basin for sites cored during expedition NGHP-02 in the offshore of India, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.07.026. [27] R. Boswell, J. Yoneda, W.F. Waite, India national gas hydrate program expedition 02 summary of scientific results:Evaluation of natural gas-hydratebearing pressure cores, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.10.020. [28] J. Yoneda, M. Oshima, M. Kida, A. Kato, Y. Konno, Y. Jin, et al., Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna-Godavari Basin, offshore India, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.07.006. [29] J. Jang, S. Dai, J. Yoneda, W.F. Waite, L.A. Stern, L.-G. Boze, et al., Pressure core analysis of geomechanical and fluid flow properties of seals associated with gas hydrate-bearing reservoirs in the Krishna-Godavari Basin, offshore India, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.08.015. [30] Y. Konno, A. Kato, J. Yoneda, M. Oshima, M. Kida, Y. Jin, et al., Numerical analysis of gas production potential from a gas-hydrate reservoir at site NGHP-02-16, the Krishna-Godavari Basin, offshore India-Feasibility of depressurization method for ultra-deepwater environment, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.08.001. [31] H.Q. Zhang, S.X. Yang, N.Y. Wu, X. Xu, M. Holland, P. Schultheiss, et al., Successful and surprising results for China's first gas hydrate drilling expedition, Fire in the Ice, National Energy Technology Laboratory, 2007. [32] G. Zhang, S. Yang, M. Zhang, J. Liang, J. Lu, M. Holland, et al., GMGS2 expedition investigates rich and complex gas hydrate environment in the South China Sea, Fire in the Ice, Methane Hydrate Newsletter, National Energy Technology Laboratory, 2014. [33] S. Yang, M. Zhang, J. Liang, J. Lu, Z. Zhang, M. Holland, et al., Preliminary results of china's third gas hydrate drilling expedition:A critical step from discovery to development in the South China Sea, Fire in the Ice, Methane Hydrate Newsletter, National Energy Technology Laboratory 2015, pp. 1-5. [34] S. Yang, J. Liang, Y. Lei, Y. Gong, H. Xu, H. Wang, et al., GMGS4 gas hydrate drilling expedition in the South China Sea, Fire in the ice, Methane Hydrate News, National Energy Technology Laboratory 2017, pp. 7-11. [35] J. Wei, Y. Fang, H. Lu, H. Lu, J. Lu, J. Liang, et al., Distribution and characteristics of natural gas hydrates in the Shenhu Sea Area, South China Sea, Mar. Pet. Geol. 98(2018) 622-628. [36] C. Liu, Q. Meng, X. He, C. Li, Y. Ye, G. Zhang, et al., Characterization of natural gas hydrate recovered from Pearl River Mouth basin in South China Sea, Mar. Pet. Geol. 61(2015) 14-21. [37] C. Liu, Y. Ye, Q. Meng, X. He, H. Lu, J. Zhang, et al., The characteristics of gas hydrates recovered from shenhu area in the South China Sea, Mar. Geol. 307-310(2012) 22-27. [38] S. Yang, Y. Lei, J. Liang, M. Holland, P. Schultheiss, Concentrated gas hydrate in the shenhu area, south China sea:Results from drilling expeditions GMGS3& GMGS4, Proceedings of the 9th International Conference on Gas Hydrates. Denver, 2017. [39] H. Lee, Y. Seo, Y.T. Seo, I.L. Moudrakovski, J.A. Ripmeester, Recovering methane from solid methane hydrate with carbon dioxide, Angew. Chem. Int. Ed. 42(2003) 5048-5051. [40] Y. Song, H. Zhou, S. Ma, W. Liu, M. Yang, CO2 sequestration in depleted methane hydrate deposits with excess water, Int. J. Energy Res. 42(2018) 2536-2547. [41] P.G. Brewer, G. Friederich, E.T. Peltzer, F.M. Orr, Direct experiments on the ocean disposal of fossil fuel CO2, Science 284(1999) 943-945. [42] G. Moridis, T.S. Collett, M. Pooladi-Darvish, S.H. Hancock, C. Santamarina, R. Boswell, et al., Challenges, Uncertainties, and Issues Facing Gas Production From Gas-Hydrate Deposits, SPE Reserv. Eval. Eng. (2011) https://doi.org/10.2118/131792-PA. [43] Y. Konno, T. Fujii, A. Sato, K. Akamine, M. Naiki, Y. Masuda, et al., Key findings of the World's first offshore methane hydrate production test off the coast of Japan:Toward future commercial production, Energy Fuel 31(2017) 2607-2616. [44] G.-J. Chen, T.-M. Guo, A new approach to gas hydrate modelling, Chem. Eng. J. 71(1998) 145-151. [45] A.H. Mohammadi, D. Richon, Methane hydrate phase equilibrium in the presence of salt (NaCl, KCl, or CaCl2)+ethylene glycol or salt (NaCl, KCl, or CaCl2)+methanol aqueous solution:Experimental determination of dissociation condition, J. Chem. Thermodyn. 41(2009) 1374-1377. [46] W.F. Waite, J.C. Santamarina, D.D. Cortes, B. Dugan, D.N. Espinoza, J. Germaine, et al., Physical properties of hydrate-bearing sediments, Rev. Geophys. 47(2009). [47] Z. Yin, M. Khurana, H.K. Tan, P. Linga, A review of gas hydrate growth kinetic models, Chem. Eng. J. 342(2018) 9-29. [48] Z.R. Chong, Z. Yin, J.H.C. Tan, P. Linga, Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach, Appl. Energy 204(2017) 1513-1525. [49] G. Li, X.-S. Li, B. Yang, L.-P. Duan, N.-S. Huang, Y. Zhang, et al., The use of dual horizontal wells in gas production from hydrate accumulations, Appl. Energy 112(2013) 1303-1310. [50] J.-C. Feng, Y. Wang, X.-S. Li, G. Li, Y. Zhang, Z.-Y. Chen, Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator, Appl. Energy 145(2015) 69-79. [51] Y. Song, L. Zhang, Q. Lv, M. Yang, Z. Ling, J. Zhao, Assessment of gas production from natural gas hydrate using depressurization, thermal stimulation and combined methods, RSC Adv. 6(2016) 47357-47367. [52] M. Priegnitz, J. Thaler, E. Spangenberg, J.M. Schicks, J. Schrötter, S. Abendroth, Characterizing electrical properties and permeability changes of hydrate bearing sediments using ERT data, Geophys. J. Int. 202(2015) 1599-1612. [53] K.U. Heeschen, S. Abendroth, M. Priegnitz, E. Spangenberg, J. Thaler, J.M. Schicks, Gas production from methane hydrate:A laboratory simulation of the multistage depressurization test in Mallik, Northwest Territories, Canada, Energy Fuel 30(2016) 6210-6219. [54] P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Recovery of methane from hydrate formed in a variable volume bed of silica sand particles, Energy Fuel 23(2009) 5508-5516. [55] Y. Wang, X.-S. Li, G. Li, Y. Zhang, B. Li, J.-C. Feng, A three-dimensional study on methane hydrate decomposition with different methods using five-spot well, Appl. Energy 112(2013) 83-92. [56] Z.R. Chong, J.W.R. Moh, Z. Yin, J. Zhao, P. Linga, Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments, Appl. Energy 229(2018) 637-647. [57] N. Li, Z.-F. Sun, C.-Y. Sun, P. Li, G.-J. Chen, Q.-L. Ma, et al., Simulating natural hydrate formation and accumulation in sediments from dissolved methane using a large three-dimensional simulator, Fuel 216(2018) 612-620. [58] Y.-F. Sun, J.-R. Zhong, W.-Z. Li, Y.-M. Ma, R. Li, T. Zhu, et al., Methane recovery from hydrate-bearing sediments by the combination of ethylene glycol injection and depressurization, Energy Fuel 32(2018) 7585-7594. [59] L.-T. Chen, N. Li, C.-Y. Sun, G.-J. Chen, C.A. Koh, B.-J. Sun, Hydrate formation in sediments from free gas using a one-dimensional visual simulator, Fuel 197(2017) 298-309. [60] T.J. Kneafsey, G.J. Moridis, X-ray computed tomography examination and comparison of gas hydrate dissociation in NGHP-01 expedition (India) and Mount Elbert (Alaska) sediment cores:Experimental observations and numerical modeling, Mar. Pet. Geol. 58(2014) 526-539. [61] Y. Seol, T.J. Kneafsey, X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand, J. Pet. Sci. Eng. 66(2009) 121-132. [62] M. Cha, K. Shin, H. Lee, I.L. Moudrakovski, J.A. Ripmeester, Y. Seo, Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy, Environ. Sci. Technol. 49(2015) 1964-1971. [63] B.A. Baldwin, A. Moradi-Araghi, J.C. Stevens, Monitoring hydrate formation and dissociation in sandstone and bulk with magnetic resonance imaging, Magn. Reson. Imaging 21(2003) 1061-1069. [64] M. Yang, Z. Fu, L. Jiang, Y. Song, Gas recovery from depressurized methane hydrate deposits with different water saturations, Appl. Energy 187(2017) 180-188. [65] Z. Yin, G. Moridis, H.K. Tan, P. Linga, Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium, Appl. Energy 220(2018) 681-704. [66] X. Liu, P.B. Flemings, Dynamic multiphase flow model of hydrate formation in marine sediments, J. Geophys. Res. Solid Earth 112(2007), B03101. [67] P. Englezos, N. Kalogerakis, P.D. Dholabhai, P.R. Bishnoi, Kinetics of formation of methane and ethane gas hydrates, Chem. Eng. Sci. 42(1987) 2647-2658. [68] X. Sun, K.K. Mohanty, Kinetic simulation of methane hydrate formation and dissociation in porous MSedia, Chem. Eng. Sci. 61(2006) 3476-3495. [69] K. You, P.B. Flemings, Methane hydrate formation in thick sand reservoirs:1. Shortrange methane diffusion, Mar. Pet. Geol. 89(2018) 428-442. [70] M. Selim, E. Sloan, Modeling of the dissociation of an in-situ hydrate, SPE California Regional Meeting, Society of Petroleum Engineers, 1985. [71] M.H. Yousif, H.H. Abass, M.S. Selim, E.D. Sloan, Experimental and Theoretical Investigation of Methane-Gas-Hydrate Dissociation in Porous Media, SPE Reserv. Eval. Eng. 6(1991) 69-76. [72] H.N. Hong, M. Pooladi-Darvish, A Numerical Study on Gas Production From Formations Containing Gas Hydrates, Petroleum Society of Canada, 2005. [73] Z. Yin, Z.R. Chong, H.K. Tan, P. Linga, Review of gas hydrate dissociation kinetic models for energy recovery, J. Nat. Gas Sci. Eng. 35(2016) 1362-1387. [74] M. Khurana, Z. Yin, P. Linga, A review of clathrate hydrate nucleation, ACS Sustain. Chem. Eng. 5(2017) 11176-11203. [75] L.-G. Tang, X.-S. Li, Z.-P. Feng, G. Li, S.-S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energy Fuel 21(2007) 227-233. [76] G.J. Moridis, User's Manual of the TOUGH+ Core Code v1. 5:A General-Purpose Simulator of Non-isothermal Flow and Transport through Porous and Fractured Media. LBNL 6871E, Lawrence Berkeley National Laboratory, Berkeley, California, USA, 2014. [77] G.J. Moridis, User's manual for the hydrate v1.5 option of TOUGH+ v1.5:A code for the simulation of system behavior in hydratebearing geologic media. LBNL-6869E, Lawrence Berkeley National Laboratory, Berkeley, California, USA, 2014. [78] M. Kurihara, A. Sato, H. Ouchi, H. Narita, T. Ebinuma, K. Suzuki, et al., Prediction of Production Test Performances in Eastern Nankai Trough Methane Hydrate Reservoirs Using 3D Reservoir Model, Offshore Technology Conference, Houston, Texas, 2010. [79] M.D. White, STOMP-HYDT-KE A Numerical Simulator for the Production of Natural Gas Hydrate Using Guest Molecule Exchange with CO2 and N2, Washington Pacific Northwest National Laboratory, Richland, 2012. [80] J.M. Schicks, E. Spangenberg, R. Giese, B. Steinhauer, J. Klump, M. Luzi, New approaches for the production of hydrocarbons from hydrate bearing sediments, Energies 4(2011) 151. [81] J.W. Wilder, G.J. Moridis, S.J. Wilson, M. Kurihara, M.D. White, Y. Masuda, et al., An international effort to compare gas hydrate reservoir simulators, 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, CANADA, 2008. [82] J. Rutqvist, G.J. Moridis, L. Berkeley, Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments, Offshore Technology Conference, Houston, Texas, USA, OTC, 200718860. [83] J. Rutqvist, G.J. Moridis, T. Grover, T. Collett, Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production, J. Pet. Sci. Eng. 67(2009) 1-12. [84] J. Kim, G. Moridis, D. Yang, J. Rutqvist, Numerical Studies on Two-Way Coupled Fluid Flow and Geomechanics in Hydrate Deposits, SPE Reserv. Eval. Eng. 17(2012) 485-501. [85] Z. Su, Y. He, N. Wu, K. Zhang, G.J. Moridis, Evaluation on gas production potential from laminar hydrate deposits in Shenhu Area of South China Sea through depressurization using vertical wells, J. Pet. Sci. Eng. 86-87(2012) 87-98. [86] G. Li, G.J. Moridis, K. Zhang, X.-s. Li, The use of huff and puff method in a single horizontal well in gas production from marine gas hydrate deposits in the Shenhu Area of South China Sea, J. Pet. Sci. Eng. 77(2011) 49-68. [87] J. Sun, L. Zhang, F. Ning, H. Lei, T. Liu, G. Hu, et al., Production potential and stability of hydrate-bearing sediments at the site GMGS3-W19 in the South China Sea:A preliminary feasibility study, Mar. Pet. Geol. 86(2017) 447-473. [88] E.D. Sloan, Gas hydrates:Review of physical/chemical properties, Energy Fuel 12(1998) 191-196. [89] Z. Yin, G. Moridis, Z.R. Chong, H.K. Tan, P. Linga, Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium, Appl. Energy 230(2018) 444-459. [90] X.-S. Li, C.-G. Xu, Y. Zhang, X.-K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate:A review, Appl. Energy 172(2016) 286-322. [91] Z. Yin, G. Moridis, Z.R. Chong, H.K. Tan, P. Linga, Numerical analysis of experiments on thermally induced dissociation of methane hydrates in porous media, Ind. Eng. Chem. Res. 57(2018) 5776-5791. [92] G. Moridis, Numerical studies of gas production from methane hydrates, SPE J. 8(2003) 359-370. [93] G.J. Moridis, M.B. Kowalsky, K. Pruess, Depressurization-induced gas production from class-1 hydrate deposits, SPE Reserv. Eval. Eng. 10(2007) 458-481. [94] P. Zhang, Q. Wu, C. Mu, Influence of temperature on methane hydrate formation, Sci. Rep. 7(2017) 7904. [95] P. Wang, S. Wang, Y. Song, M. Yang, Dynamic measurements of methane hydrate formation/dissociation in different gas flow direction, Appl. Energy 227(2018) 703-709. [96] W.M. Deen, Analysis of Transport Phenomena, Oxford University Press, New York, 1998. [97] B.J. Anderson, M. Kurihara, M.D. White, G.J. Moridis, S.J. Wilson, M. Pooladi-Darvish, et al., Regional long-term production modeling from a single well test, Mount Elbert gas hydrate stratigraphic test well, Alaska North Slope, Mar. Pet. Geol. 28(2011) 493-501. [98] S. Uchida, A. Klar, K. Yamamoto, Sand production model in gas hydrate-bearing sediments, Int. J. Rock Mech. Min. Sci. 86(2016) 303-316. [99] S. Zhou, J. Zhao, Q. Li, W. Chen, J. Zhou, N. Wei, et al., Optimal design of the engineering parameters for the first global trial production of marine natural gas hydrates through solid fluidization, Nat. Gas Ind. B 5(2018) 118-131. [100] M.R. Walsh, S.H. Hancock, S.J. Wilson, S.L. Patil, G.J. Moridis, R. Boswell, et al., Preliminary report on the commercial viability of gas production from natural gas hydrates, Energy Econ. 31(2009) 815-823. [101] A. Hu, Q. Dong, On natural gas pricing reform in China, Nat. Gas Ind. B 2(2015) 374-382. [102] W.-L. Hong, M.E. Torres, J. Carroll, A. Crémière, G. Panieri, H. Yao, et al., Seepage from an arctic shallow marine gas hydrate reservoir is insensitive to momentary ocean warming, Nat. Commun. 8(2017) 15745. [103] C.D. Ruppel, J.D. Kessler, The interaction of climate change and methane hydrates, Rev. Geophys. 55(2017) 126-168. [104] A. Oyama, S. Masutani, A review of the methane hydrate program in Japan, Energies 10(2017) 1447. [105] G.J. Moridis, T.S. Collett, M. Pooladi-Darvish, S.H. Hancock, J.C. Santamarina, R. Boswell, et al., Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits, SPE Reserv. Eval. Eng. 14(2011) 76-112. [106] K. Miyazaki, A. Masui, Y. Sakamoto, K. Aoki, N. Tenma, T. Yamaguchi, Triaxial compressive properties of artificial methane-hydrate-bearing sediment, J. Geophys. Res. Solid Earth 116(2011), B06102. [107] Y. Song, F. Yu, Y. Li, W. Liu, J. Zhao, Mechanical property of artificial methane hydrate under triaxial compression, J. Nat. Gas Chem. 19(2010) 246-250. [108] T.S. Yun, J.C. Santamarina, C. Ruppel, Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate, J. Geophys. Res. Solid Earth 112(2007), B04106. [109] J. Yoneda, A. Masui, Y. Konno, Y. Jin, K. Egawa, M. Kida, et al., Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough, Mar. Pet. Geol. 66(2015) 471-486. [110] J. Brugada, Y.P. Cheng, K. Soga, J.C. Santamarina, Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution, Granul. Matter 12(2010) 517-525. [111] T.S. Collett, Gas Hydrates:Update on International Activities, U.S. Geol. Surv. (2018). [112] S.R. Dallimore, J.F. Wright, F.M. Nixon, M. Kurihara, K. Yamamoto, T. Fujii, et al., Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA mallik gas hydrate production research well, The 6th International Conference on GasHydrates. Vancouver, British Columbia, Canada, 2008. [113] J. Henninges, E. Huenges, H. Burkhardt, In situ thermal conductivity of gas-hydratebearing sediments of the Mallik 5L-38 well, J. Geophys. Res. 110(2005), B11206. [114] T.D. Lorenson, M.J. Whiticar, A. Waseda, S.R. Dallimore, T.S. Collett, Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Geol. Surv. Can. Bull. (1999) 143-163. [115] M. Muraoka, M. Ohtake, N. Susuki, Y. Yamamoto, K. Suzuki, T. Tsuji, Thermal properties of methane hydrate-bearing sediments and surrounding mud recovered from Nankai Trough wells, J. Geophys. Res. Solid Earth 119(2014) 8021-8033. [116] T. Fujii, T. Saeki, T. Kobayashi, T. Inamori, M. Hayashi, O. Takano, et al., Resource Assessment of Methane Hydrate in the Eastern Nankai Trough, Japan, Offshore Technology Conference, Houston, Texas, USA, 200815. [117] J. Liang, J. Wei, N. Bigalke, J. Roberts, P. Schultheiss, M. Holland, et al., Laboratory quantification of geomechanical properties of hydrate-bearing sediments in the Shenhu Area of the South China Sea at in-situ conditions, the 9th International Conference on Gas Hydrates (ICGH 2017). Denver, USA, 2017. [118] X. Wang, D.R. Hutchinson, S. Wu, S. Yang, Y. Guo, Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea, J. Geophys. Res. 116(2011). [119] X. Fu, J. Wang, F. Tan, X. Feng, D. Wang, J. He, Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China, Energy Convers. Manag. 73(2013) 186-194. [120] Z. Lu, Y. Zhu, Y. Zhang, H. Wen, Y. Li, C. Liu, Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China, Cold Reg. Sci. Technol. 66(2011) 93-104. [121] B. Li, Y. Sun, W. Guo, X. Shan, P. Wang, S. Pang, et al., The mechanism and verification analysis of permafrost-associated gas hydrate formation in the Qilian Mountain, Northwest China, Mar. Pet. Geol. 86(2017) 787-797. [122] Y. Zhu, Y. Zhang, H. Wen, Z. Lu, Z. Jia, Y. Li, et al., Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China, Acta Geol. Sin. Engl. Ed. 84(2010) 1-10. [123] M.E. Holland, P.J. Schultheiss, J.A. Roberts, Gas hydrate saturation and morphology from analysis of pressure cores acquired in the Bay of Bengal during expedition NGHP-02, offshore India, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.07.018(in press). [124] G.J. Moridis, M.T. Reagan, A.F. Queiruga, R. Boswell, Evaluation of the performance of the oceanic hydrate accumulation at site NGHP-02-09 in the Krishna-Godavari Basin during a production test and during single and multi-well production scenarios, Mar. Pet. Geol. (2018) https://doi.org/10.1016/j.marpetgeo.2018.12.001(in press). [125] J.J. Bahk, D.H. Kim, J.H. Chun, B.K. Son, J.H. Kim, B.J. Ryu, et al., Gas hydrate occurrences and their relation to host sediment properties:Results from second Ulleung Basin gas hydrate drilling expedition, East Sea, Mar. Pet. Geol. 47(2013) 21-29. [126] Y.J. Kim, T.S. Yun, Thermal conductivity of methane hydrate-bearing Ulleung Basin marine sediments:Laboratory testing and numerical evaluation, Mar. Pet. Geol. 47(2013) 77-84. [127] J. Choi, J.-H. Kim, M.E. Torres, W.-L. Hong, J.-W. Lee, B.Y. Yi, et al., Gas origin and migration in the Ulleung Basin, East Sea:Results from the second Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2), Mar. Pet. Geol. 47(2013) 113-124. [128] B.-J. Ryu, T.S. Collett, M. Riedel, G.Y. Kim, J.-H. Chun, J.-J. Bahk, et al., Scientific results of the second gas hydrate drilling expedition in the Ulleung Basin (UBGH2), Mar. Pet. Geol. 47(2013) 1-20. [129] S. Falser, S. Uchida, A.C. Palmer, K. Soga, T.S. Tan, Increased gas production from hydrates by combining depressurization with heating of the wellbore, Energy Fuel 26(2012) 6259-6267. [130] X.-S. Li, Y. Zhang, G. Li, Z.-Y. Chen, H.-J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuel 25(2011) 4497-4505. [131] B. Li, G. Li, X.-S. Li, Q.-P. Li, B. Yang, Y. Zhang, et al., Gas production from methane hydrate in a pilot-scale hydrate simulator using the huff and puff method by experimental and numerical studies, Energy Fuel 26(2012) 7183-7194. [132] L. Zhang, J. Zhao, H. Dong, Y. Zhao, Y. Liu, Y. Zhang, et al., Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation, Chem. Eng. Sci. 144(2016) 135-143. [133] Y. Song, C. Cheng, J. Zhao, Z. Zhu, W. Liu, M. Yang, et al., Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods, Appl. Energy 145(2015) 265-277. [134] T.J. Kneafsey, L. Tomutsa, G.J. Moridis, Y. Seol, B.M. Freifeld, C.E. Taylor, et al., Methane hydrate formation and dissociation in a partially saturated core-scale sand sample, J. Pet. Sci. Eng. 56(2007) 108-126. [135] W.X. Pang, W.Y. Xu, C.Y. Sun, C.L. Zhang, G.J. Chen, Methane hydrate dissociation experiment in a middle-sized quiescent reactor using thermal method, Fuel 88(2009) 497-503. [136] H.O. Kono, S. Narasimhan, F. Song, D.H. Smith, Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing, Powder Technol. 122(2002) 239-246. [137] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment, RSC Adv. 4(2014) 51666-51675. [138] V.C. Nair, S.K. Prasad, R. Kumar, J.S. Sangwai, Energy recovery from simulated clayey gas hydrate reservoir using depressurization by constant rate gas release, thermal stimulation and their combinations, Appl. Energy 225(2018) 755-768. [139] I.K. Gamwo, Y. Liu, Mathematical modeling and numerical simulation of methane production in a hydrate reservoir, Ind. Eng. Chem. Res. 49(2010) 5231-5245. [140] M. Kurihara, K. Funatsu, H. Ouchi, Y. Masuda, H. Narita, T. Ebinuma, Development of numerical simulator predicting methane hydrate dissociation and production, J. Jpn. Assoc. Pet. Technol. 74(2009) 297-310. [141] M. Kurihara, A. Sato, H. Ouchi, H. Narita, Y. Masuda, T. Saeki, et al., Prediction of Gas Productivity From Eastern Nankai Trough Methane-Hydrate Reservoirs, SPE Reserv. Eval. Eng. 12(2009) 477-499. [142] M. Uddin, D.A. Coombe, D.H.-S. Law, W.D. Gunter, Numerical studies of gashydrates formation and decomposition in a geological reservoir, SPE Gas Technology Symposium, Society of Petroleum Engineers, Calgary, Alberta, Canada 2006, p. 13. [143] K. Nazridoust, G. Ahmadi, Computational modeling of methane hydrate dissociation in a sandstone core, Chem. Eng. Sci. 62(2007) 6155-6177. [144] Z. Liu, X. Yu, Thermo-hydro-mechanical-chemical simulation of methane hydrate dissociation in porous media, Geotech. Geol. Eng. 31(2013) 1681-1691. |
[1] | Tongtong Zhang, Xiaohui She, Yulong Ding. A power plant for integrated waste energy recovery from liquid air energy storage and liquefied natural gas [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 242-257. |
[2] | Jingchun Feng, Longtao Sun, Yi Wang, Xiaosen Li. Advances of experimental study on gas production from synthetic hydrate reservoir in China [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2213-2225. |
[3] | Wangliang Li, Changbo Lu, Gaojun An, Yuming Zhang, Yen Wah Tong. Integration of high-solid digestion and gasification to dispose horticultural waste and chicken manure [J]. Chin.J.Chem.Eng., 2018, 26(5): 1145-1151. |
[4] | Weijun Li, Jakob Kjøbsted Huusom, Zhimao Zhou, Yi Nie, Yajing Xu, Xiangping Zhang. Multi-objective optimization of methane production system from biomass through anaerobic digestion [J]. Chin.J.Chem.Eng., 2018, 26(10): 2084-2092. |
[5] | Cuiwen Cao, Yakun Zhang, Teng Yu, Xingsheng Gu, Zhong Xin, Jie Li. A novel 3-layer mixed cultural evolutionary optimization framework for optimal operation of syngas production in a Texaco coal-water slurry gasifier [J]. , 2015, 23(9): 1484-1501. |
[6] | QI Bingwei, WANG Yue, WANG Zhaocheng, ZHANG Yanping, XU Shichang, WANG Shichang. Theoretical Investigation on Internal Leakage and Its Effect on the Efficiency of Fluid Switcher-Energy Recovery Device for Reverse Osmosis Desalting Plant [J]. Chin.J.Chem.Eng., 2013, 21(11): 1216-1223. |
[7] | SUN Jiaxi, WANGYue, XU Shichang, WANG Shichang. Energy Recovery Device with a Fluid Switcher for Seawater Reverse Osmosis System [J]. , 2008, 16(2): 329-332. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 600
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||