Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 2037-2043.DOI: 10.1016/j.cjche.2019.02.017
Previous Articles Next Articles
Jianan Zheng1, Fanbao Cheng1, Yuanping Li2, Xin Lü3, Mingjun Yang1
Received:
2018-11-30
Revised:
2019-02-18
Online:
2019-12-04
Published:
2019-09-28
Contact:
Mingjun Yang
Supported by:
Jianan Zheng1, Fanbao Cheng1, Yuanping Li2, Xin Lü3, Mingjun Yang1
通讯作者:
Mingjun Yang
基金资助:
Jianan Zheng, Fanbao Cheng, Yuanping Li, Xin Lü, Mingjun Yang. Progress and trends in hydrate based desalination (HBD) technology: A review[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2037-2043.
Jianan Zheng, Fanbao Cheng, Yuanping Li, Xin Lü, Mingjun Yang. Progress and trends in hydrate based desalination (HBD) technology: A review[J]. 中国化学工程学报, 2019, 27(9): 2037-2043.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.02.017
[1] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452(2008) 301-310. [2] A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Advances in seawater desalination technologies, Desalination 221(2008) 47-69. [3] M. Elimelech, W.A. Phillip, The future of seawater desalination:Energy, technology, and the environment, Science 333(2011) 712-717. [4] K.C. Kang, P. Linga, K.N. Park, S.J. Choi, J.D. Lee, Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl-, SO24-), Desalination 353(2014) 84-90. [5] J.E. Miller, Reviewofwaterresourcesand desalinationtechnologies, Communications 195(2004) 6428-6447. [6] R. Semiat, Energy issues in desalination processes, Environ. Sci. Technol. 42(2008) 8193-8201. [7] R.W. Bradshawa, B.A. Simmonsa, E.H. Majzouba, W.M. Clifta, D.E. Dedrick, Clathrate hydrates for production of potable water, MRS Proc. 930(2006). [8] E.D. Sloan, Fundamental principles and applications of natural gas hydrates, Nature 426(2003) 353-359. [9] X.S. Li, C.G. Xu, Y. Zhang, X.K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate:A review, Appl. Energy 172(2016) 286-322. [10] M.J. Yang, Y.C. Song, L.L. Jiang, W.G. Liu, B.L. Dou, W. Jing, Effects of operating mode and pressure on hydrate-based desalination and CO2 capture in porous media, Appl. Energy 135(2014) 504-511. [11] P. Babu, A. Nambiar, T. He, I.A. Karimi, J.D. Lee, P. Englezos, P. Linga, A review of clathrate hydrate based desalination to strengthen energy-water nexus, ACS Sustain. Chem. Eng. 6(2018) 8093-8107. [12] S. Kalogirou, Seawater desalination using renewable energy sources, Prog. Energy Combust. Sci. 31(2005) 242-281. [13] Y.A. Lim, P. Babu, R. Kumar, P. Linga, Morphology of carbon dioxide-hydrogencyclopentane hydrates with or without sodium dodecyl sulfate, Cryst. Growth Des. 13(2013) 2047-2059. [14] P. Babu, R. Kumar, P. Linga, Unusual behavior of propane as a co-guest during hydrate formation in silica sand:Potential application to seawater desalination and carbon dioxide capture, Chem. Eng. Sci. 117(2014) 342-351. [15] C. Sun, W. Li, X. Yang, F. Li, Q. Yuan, L. Mu, J. Chen, B. Liu, G. Chen, Progress in research of gas hydrate, Chin. J. Chem. Eng. 19(2011) 151-162. [16] D.M. Cole, L.H. Shapiro, Observations of brine drainage networks and microstructure of first-year sea ice, J. Geophys. Res. Oceans 103(1998) 21739-21750. [17] H. Yang, Z. Zhan, Y. Yao, Z. Sun, Influence of gravity-induced brine drainage on seawater ice desalination, Desalination 407(2017) 33-40. [18] J.H. Cha, Y. Seol,Increasing gas hydrate formation temperature for desalination of high salinity produced water with secondary guests, ACS Sustain. Chem. Eng. 1(2013) 1218-1224. [19] Z. Yu, Y. Qi, L. Ji, Y. Xing, Y. Liu, Experimental study of effects on hydrate seawater desalination by CO2, Low Temp. Spec. Gases 31(2013) 21-25. [20] C. Liu, H. Ren, Q. Meng, S. Sun, An experimental study of CO2 hydrate-based seawater desalination with the R141b as an accelerant, Nat. Gas Ind. 33(2013) 90-95. [21] K.C. Kang, S.Y. Hong, S.J. Cho, D.H. Kim, J.D. Lee, Evaluation of desalination by nanostructured hydrate formation and pellet production process, J. Nanosci. Nanotechnol. 17(2017) 4059-4062. [22] M. Sarshar, A. Sharafi, Simultaneous water desalination and CO2 capturing by hydrate formation, Desalin. Water Treat. 28(2011) 59-64. [23] M. Yang, J. Zheng, W. Liu, Y. Liu, Y. Song, Effects of C3H8 on hydrate formation and dissociation for integrated CO2 capture and desalination technology, Energy 93(2015) 1971-1979. [24] S. Li, S. Fan, J. Wang, X. Lang, Y. Wang, Clathrate Hydrate Capture of CO2 from Simulated Flue Gas with Cyclopentane/Water Emulsion, Chin. J. Chem. Eng. 18(2010) 202-206. [25] C.G. Xu, X.S. Li, Research progress of hydrate-based CO2 separation and capture from gas mixtures, RSC Adv. 4(2014) 18301-18316. [26] M. Wendland, H. Hasse, G. Maurer, Experimental pressure-temperature data on three- and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide-water, J. Chem. Eng. Data 44(1999) 901-906. [27] S.O. Yang, I.M. Yang, Y.S. Kim, C.S. Lee, Measurement and prediction of phase equilibria for water + CO2 in hydrate forming conditions, Fluid Phase Equilib. 175(2000) 75-89. [28] X. Li, C. Xu, Z. Chen, H. Wu, J. Cai, Effect of temperature fluctuation on hydrate-based CO2 separation from fuel gas, J. Nat. Gas Chem. 20(2011) 647-653. [29] P.D. Dholabhai, J.S. Parent, P.R. Bishnoi, Carbon dioxide hydrate equilibrium conditions in aqueous solutions containing electrolytes and methanol using a new apparatus, Ind. Eng. Chem. Res. 35(1996) 819-823. [30] P.D. Dholabhai, J.S. Parent, P.R. Bishnoi, Equilibrium conditions for hydrate formation from binary mixtures of methane and carbon dioxide in the presence of electrolytes, methanol and ethylene glycol, Fluid Phase Equilib. 141(1997) 235-246. [31] S.P. Kang, M.K. Chun, H. Lee, Phase equilibria of methane and carbon dioxide hydrates in the aqueous MgCl2 solutions, Fluid Phase Equilib. 147(1998) 229-238. [32] A.H. Mohammadi, W. Afzal, D. Richo, Gas hydrates of methane, ethane, propane and carbon dioxide in the presence of single NaCl, KCl and CaCl2 aqueous solutions:Experimental measurements and predictions of dissociation conditions, J. Chem. Thermodyn. 40(2008) 1693-1697. [33] S. Sun, C. Liu, Y. Ye, Phase equilibrium condition of marine carbon dioxide hydrate, J. Chem. Thermodyn. 57(2013) 256-260. [34] M.J. Yang, Y.C. Song, Y. Liu, W.H. Lam, Q.P. Li, Equilibrium conditions for CO2 hydrate in porous medium, J. Chem. Thermodyn. 43(2011) 334-338. [35] P.D. Dholabhai, N. Kalogerakis, P.R. Bishnoi, Equilibrium conditions for carbon dioxide hydrate formation in aqueous electrolyte solutions, J. Chem. Eng. Data 38(1993) 650-654. [36] T. Maekawa, Equilibrium conditions of clathrate hydrates formed from carbon dioxide and aqueous acetone solutions, Fluid Phase Equilib. 303(2011) 76-79. [37] E. Breland, P. Englezos, Equilibrium hydrate formation data for carbon dioxide in aqueous glycerol solutions, J. Chem. Eng. Data 41(1996) 11-13. [38] J.N. Zheng, M.J. Yang, Y. Liu, D.Y. Wang, Y.C. Song, Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination, J. Chem. Thermodyn. 104(2017) 9-15. [39] J.S. Zhang, J.W. Lee, Equilibrium of hydrogen plus cyclopentane and carbon dioxide plus cyclopentane binary hydrates, J. Chem. Eng. Data 54(2009) 659-661. [40] Y. Matsumoto, T. Makino, T. Sugahara, K. Ohgaki, Phase equilibrium relations for binary mixed hydrate systems composed of carbon dioxide and cyclopentane derivatives, Fluid Phase Equilib. 362(2014) 379-382. [41] P.R. Bishnoi, P.D. Dholabhai, Experimental study on propane hydrate equilibrium conditions in aqueous electrolyte solutions, Fluid Phase Equilib. 83(1993) 455-462. [42] D.B. Robinson, B.R. Mehta, Hydrates in the propane-carbon dioxide-water system, J. Can. Pet. Technol. 10(1971) 33-35. [43] P. Babu, T. Yang, H.P. Veluswamy, R. Kumar, P. Linga, Hydrate phase equilibrium of ternary gas mixtures containing carbon dioxide, hydrogen and propane, J. Chem. Thermodyn. 61(2013) 58-63. [44] H.P. Veluswamy, J.Y. Chen, P. Linga, Surfactant effect on the kinetics of mixed hydrogen/propane hydrate formation for hydrogen storage as clathrates, Chem. Eng. Sci. 126(2015) 488-499. [45] R. Kumar, Hui-jie Wu, P. Englezos, Incipient hydrate phase equilibrium for gas mixtures containing hydrogen, carbon dioxide and propane, Fluid Phase Equilib. 244(2006) 167-171. [46] R. Kumar, P. Linga, I. Moudrakovski, J.A. Ripmeester, P. Englezos, Structure and kinetics of gas hydrates from methane/ethane/propane mixtures relevant to the design of natural gas hydrate storage and transport facilities, AIChE J. 54(2008) 2132-2144. [47] J. Yoslim, P. Linga, P. Englezos, Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants, J. Cryst. Growth 313(2010) 68-80. [48] H. Lee, J.W. Lee, D.Y. Kim, J. Park, Y.T. Seo, H. Zeng, I.L. Moudrakovski, C.I. Ratcliffe, J.A. Ripmeester, Tuning clathrate hydrates for hydrogen storage, Nature 434(2005) 743-746. [49] L.J. Florusse, C.J. Peters, J. Schoonman, K.C. Hester, C.A. Koh, S.F. Dec, K.N. Marsh, E.D. Sloan, Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate, Science 306(2004) 469-471. [50] E.D. Sloan, C. Koh, Molecular structures and similarities to ice, in:T.F. Group (Ed.), Clathrate hydrates of natural gases, CRC Press 2007, pp. 46-90. [51] H.P.Veluswamy, A. Kumar, K. Premasinghe, P.Linga,Effectofguest gason themixed tetrahydrofuran hydrate kinetics in a quiescent system, Appl. Energy 207(2017) 573-583. [52] H.P. Veluswamy, A. Kumar, R. Kumar, P. Linga, An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application, Appl. Energy 188(2017) 190-199. [53] Z. Yu, Y. Qi, Y. Liu, H. Zhang, Experimental research on HCFC-141b hydrate seawater desalination, Chinese Journal of Refrigeration Technology, 32, 2012, pp. 46-48, (in Chinese). [54] Y. Song, H. Dong, L. Yang, M. Yang, Y. Li, Z. Ling, J. Zhao, Hydrate-based heavy metal separation from aqueous solution, Sci. Rep. 6(2016) 21389. [55] H. Xu, M.N. Khan, C.J. Peters, E.D. Sloan, C.A. Koh, Hydrate-based desalination using cyclopentane hydrates at atmospheric pressure, J. Chem. Eng. Data 63(2018) 1081-1087. [56] F. Li, Z. Chen, H. Dong, C. Shi, B. Wang, L. Yang, Z. Ling, Promotion effect of graphite on cyclopentane hydrate based desalination, Desalination 445(2018) 197-203. [57] S. Han, Y. Rhee, S. Kang, Investigation of salt removal using cyclopentane hydrate formation and washing treatment for seawater desalination, Desalination 404(2017) 132-137. [58] D. Corak, T. Barth, S. Høiland, T. Skodvin, R. Larsen, T. Skjetne, Effect of subcooling and amount of hydrate former on formation of cyclopentane hydrates in brine, Desalination 278(2001) 268-274. [59] J. Zheng, B. Zhang, Q. Wu, P. Linga, Kinetic evaluation of cyclopentane as a promoter for CO2 capture via a clathrate process employing different contact modes, ACS Sustain. Chem. Eng. 6(2018) 11913-11921. [60] A.H. Mohammadi, A. Eslamimanesh, V. Belandria, D. Richon, Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+ tetra-n-butylammonium bromide aqueous solution, J. Chem. Eng. Data 56(2011) 3855-3865. [61] S.P. Kang, H. Lee, C.S. Lee, W.M. Sung, Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran, Fluid Phase Equilib. 185(2001) 101-109. [62] A.H. Mohammadi, D. Richon, Phase equilibria of semi-clathrate hydrates of tetra-nbutylammonium bromide + hydrogen sulfide and tetra-n-butylammonium bromide + methane, J. Chem. Eng. Data 55(2010) 982-984. [63] A.H. Mohammadi, D. Richon, Phase equilibria of binary clathrate hydrates of nitrogen + cyclopentane/cyclohexane/methyl cyclohexane and ethane + cyclopentane/cyclohexane/methyl cyclohexane, Chem. Eng. Sci. 66(2011) 4936-4940. [64] M. Alberti, F. Pirani, A. Lagana, Carbon dioxide clathrate hydrates:selective role of intermolecular interactions and action of the SDS catalyst, J. Phys. Chem. A 117(2013) 6991-7000. [65] Y. Li, C. Zhu, W. Wang, Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics, Petrochem. Technol. 41(2012) 699-703(in Chinese). [66] H. Komatsu, A. Hayasaka, M. Ota, Y. Sato, M. Watanabe, R.L. Smith, Measurement of pure hydrogen and pure carbon dioxide adsorption equilibria for THF clathrate hydrate and tetra-n-butyl ammonium bromide semi-clathrate hydrate, Fluid Phase Equilib. 357(2013) 80-85. [67] A.H. Mohammadi, A. Eslamimanesh, V. Belandria, D. Richon, P. Naidoo, D. Ramjugernath, Phase equilibrium measurements for semi-clathrate hydrates of the (CO2+ N2+ tetra-n-butylammonium bromide) aqueous solution system, J. Chem. Thermodyn. 46(2012) 57-61. [68] N.H. Duc, F. Chauvy, J.-M. Herri, CO2 capture by hydrate crystallization-A potential solution for gas emission of steelmaking industry, Energy Convers. Manag. 48(2007) 1313-1322. [69] X.S. Li, C.G. Xu, Z.Y. Chen, H.J. Wu, Tetra-n-butyl ammonium bromide semi-clathrate hydrate process for post-combustion capture of carbon dioxide in the presence of dodecyl trimethyl ammonium chloride, Energy 35(2010) 3902-3908. [70] X.S. Li, C.G. Xu, Z.Y. Chen, J. Cai, Synergic effect of cyclopentane and tetra-n-butyl ammonium bromide on hydrate-based carbon dioxide separation from fuel gas mixture by measurements of gas uptake and X-ray diffraction patterns, Int. J. Hydrog. Energy 37(2012) 720-727. [71] C.G. Xu, S.H. Zhang, J. Cai, Z.Y. Chen, X.S. Li, CO2(carbon dioxide) separation from CO2-H2(hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis, Energy 59(2013) 719-725. [72] X. Li, C. Xu, Z. Chen, H. Wu, Hydrate-based pre-combustion carbon dioxide capture process in the system with tetra-n-butyl ammonium bromide solution in the presence of cyclopentane, Energy 36(2011) 1394-1403. [73] M.M. Mooijer-van den Heuvel, R. Witteman, C.J. Peters, Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane, Fluid Phase Equilib. 182(2001) 97-110. [74] P. Babu, C.Y. Ho, R. Kumar, P. Linga, Enhanced kinetics for the clathrate process in a fixed bed reactor in the presence of liquid promoters for pre-combustion carbon dioxide capture, Energy 70(2014) 664-673. [75] O.Y. Zatsepina, B.A. Buffett, Nucleation of CO2 hydrate in porous medium, Fluid Phase Equilib. 200(2002) 263-275. [76] S. Wang, M. Yang, W. Liu, J. Zhao, Y. Song, Investigation on the induction time of methane hydrate formation in porous media under quiescent conditions, J. Pet. Sci. Eng. 145(2016) 565-572. [77] M. Khurana, Z.Y. Yin, P. Linga, A review of clathrate hydrate nucleation, ACS Sustainable Chemistry & Engineering 5(2017) 11176-11203. [78] P. Linga, N. Daraboina, J.A. Ripmeester, P. Englezos, Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel, Chem. Eng. Sci. 68(2012) 617-623. [79] C. Xu, X. Li, Q. Lv, Z. Chen, J. Cai, Hydrate-based CO2(carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment, Energy 44(2012) 358-366. [80] H. Tsuji, T. Kobayashi, R. Ohmura, Y.H. Mori, Hydrate formation by water spraying in a methane plus ethane plus propane gas mixture:An attempt at promoting hydrate formation utilizing large-molecule guest substances for structure-h hydrates, Energy Fuel 19(2005) 869-876. [81] J. Zhang, J.W. Lee, Inhibition effect of surfactants on CO2 enclathration with cyclopentane in an unstirred batch reactor, Ind. Eng. Chem. Res. 48(2009) 4703-4709. [82] Z.G. Sun, S.S. Fan, K.H. Guo, L. Shi, R.Z. Wang, Equilibrium hydrate formation conditions for methylcyclohexane with methane and a ternary gas mixture, Fluid Phase Equilib. 198(2002) 293-298. [83] P. Linga, R. Kumar, J.D. Lee, J. Ripmeester, P. Englezos, A new apparatus to enhance the rate of gas hydrate formation:Application to capture of carbon dioxide, Int. J. Greenhouse Gas Control 4(2010) 630-637. [84] A. Kumar, Formation and dissociation of gas hydrates in porous media, PhD Thesis, University of Calgary, Canada, 2005. [85] P.S.R. Prasad, Y. Sowjanya, V.D. Chari, Enhancement in methane storage capacity in gas hydrates formed in hollow silica, J. Phys. Chem. C 118(2014) 7759-7764. [86] P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Gas hydrate formation in a variable volume bed of silica sand particles, Energy Fuel 23(2009) 5496-5507. [87] D.H. Smith, J.W. Wilder, K. Seshadri, Thermodynamics of carbon dioxide hydrate formation in media with broad pore-size distributions, Environ. Sci. Technol. 36(2002) 5192-5198. [88] R. Anderson, M. Llamedo, B. Tohidi, R.W. Burgass, Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica, J. Phys. Chem. B 107(2003) 3507-3514. [89] P. Linga, P. Babu, A.P. Nambiar, A Clathrate Hydrate Desalination Method, Singapore Pat., PCT/SG2018/050083, 2018. [90] K.N. Park, S.Y. Hong, J.W. Lee, K.C. Kang, Y.C. Lee, M.G. Ha, J.D. Lee, A new apparatus for seawater desalination by gas hydrate process and removal characteristics of dissolved minerals (Na+, Mg2+, Ca2+, K+, B3+), Desalination 274(2011) 91-96. [91] J. Javanmardi, M. Moshfeghian, Energy consumption and economic evaluation of water desalination by hydrate phenomenon, Appl. Therm. Eng. 23(2003) 845-857. [92] E.D. Sloan, A.K. Carolyn, Clathrate Hydrates of Natural Gases, CRC Press, 2007. [93] Z.R. Chong, J.W. Koh, P. Linga, Effect of KCl and MgCl2 on the kinetics of methane hydrate formation and dissociation in sandy sediments, Energy 137(2017) 518-529. [94] S.H.B. Yang, P. Babu, S.F.S. Chua, P. Linga, Carbon dioxide hydrate kinetics in porous media with and without salts, Appl. Energy 162(2016) 1131-1140. [95] B. Chen, Y. Gao, M. Yang, D. Wang, Y. Song, N. Li, The influence of electric field and peroxide of THF on the THF hydrate formation, Proceedings of the 9th International Conference on Applied Energy, Energy Procedia (2017) 3956-3961. [96] J.D. Lee, K.C. Kang, Novel apparatus for seawater desalination and its application, Trans. Korean Soc. Mech. Eng. B 38(2014) 407-412. [97] H.P. Veluswamy, A. Kumar, Y. Seo, J.D. Lee, P. Linga, A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates, Appl. Energy 216(2018) 262-285. [98] T. He, S.K. Nair, P. Babu, P. Linga, I.A. Karimi, A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy, Appl. Energy 222(2018) 13-24. [99] Y. Song, J. Zheng, M. Yang, W. Liu, J. Zhao, Y. Zhang, A Flue Gas Hydrate Based Desalination System Using LNG Cold Energy, China Pat., PCT/CN2016/110553, 2016. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[3] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[4] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[5] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[8] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[9] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[10] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[11] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[12] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[13] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 151-161. |
[14] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[15] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||