Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 2044-2048.DOI: 10.1016/j.cjche.2019.02.031
Previous Articles Next Articles
Peter Englezos
Received:
2018-12-13
Revised:
2019-02-22
Online:
2019-12-04
Published:
2019-09-28
Peter Englezos
作者简介:
Peter Englezos,E-mail address:peter.englezos@ubc.ca.
Peter Englezos. Extraction of methane hydrate energy by carbon dioxide injection-key challenges and a paradigm shift[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2044-2048.
Peter Englezos. Extraction of methane hydrate energy by carbon dioxide injection-key challenges and a paradigm shift[J]. 中国化学工程学报, 2019, 27(9): 2044-2048.
[1] D.W. Davidson, M.K. El-Defrawy, M.O. Fuglam, A.S. Judge, Natural gas hydrates in northern Canada, Proceedings, Third International Conference on Permafrost, July 10-13, 1978, Edmonton, AB, National Research Council of Canada, Ottawa, ON, vol 1, 1978, pp. 938-943. [2] K.A. Kvenvolden, Potential effects of gas hydrate on human welfare, Proc. Natl. Acad. Sci. U. S. A. 96(7) (1999) 3420-3426. [3] E.D. Sloan, C. Koh, Clathrate Hydrates of Natural Gases, 3rd edition CRC Press, 2007. [4] Grace, et al., Energy From Gas Hydrates:Assessing the Opportunities and Challenges for Canada, The Council of Canadian Academies, Ottawa, Canada, 2008. [5] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X. Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy 162(2016) 1633-1652. [6] H. Lu, Y.T. Seo, J.W. Lee, I. Moudrakovski, J.A. Ripmeester, N.R. Chapman, R.B. Coffin, G. Gardner, J. Pohlman, Complex gas hydrate from the Cascadia margin, Nature 445(7125) (2007) 303-306. [7] P. Englezos, Clathrate hydrates, Ind. Eng. Chem. Res. 32(7) (1993) 1251-1274. [8] S.G. Hatzikiriakos, P. Englezos, The relationship between global warming and methane gas hydrates in the earth, Chem. Eng. Sci. 48(23) (1993) 3963-3969. [9] T. Nakamura, T. Makino, T. Sugahara, K. Ohgaki, Stability boundaries of gas hydrates helped by methane-Structure-H hydrates of methylcyclohexane and cis-1, 2-dimethylcyclohexane, Chem. Eng. Sci. 58(2003) 269-273. [10] Z.R. Chong, M. Yang, B.C. Khoo, P. Linga, Size effect of porous media on CH4 hydrate formation & dissociation in excess gas environment, Ind. Eng. Chem. Res. 55(2016) 7981-7991. [11] P.D. Dholabhai, P. Englezos, N. Kalogerakis, P.R. Bishnoi, Equilibrium conditions for CH4 hydrate formation in aqueous mixed electrolyte solutions, Can. J. Chem. Eng. 69(1991) 800-805. [12] Z.R. Chong, A.H.M.Chan,P.Babu, M. Yang, P.Linga, Effect ofNaClonmethanehydrate formation and dissociation in porous media, J. Nat. Gas Sci. Eng. 27(2015) 178-189. [13] T.S. Collett, Why not gas hydrates, 9th International Conference on Gas Hydrates, (Keynote), June 25-30, 2017, (Denver, Colorado, USA). [14] J.G.Vlahakis,H.-S.Chen,M.S.Suwandi,A.J.Barduhn,Thegrowthrateoficecrystals:Properties of carbon dioxide hydrates, a review of properties of 51 gas hydrates, Syracuse U. Research and Development Report 830, US Department of the Interior, November. 1972. [15] H. Komatsu, M. Ota, R.L. Smith, H. Inomata, Review of CO2-CH4 clathrate hydrate replacement reaction laboratory studies-Properties and kinetics, J. Taiwan Inst. Chem. Eng. 44(2013) 517-537. [16] N. Goel, In situ methane hydrate dissociation with carbon dioxide sequestration:Current knowledge and issues, J. Pet. Sci. Eng. 51(2006) 169-184. [17] D. Schoderbek, H. Farrell, K. Hester, J. Howard, K. Raterman, S. Silpngarmlert, K.L. Martin, B. Smith, P. Klein, ConocoPhillips gas hydrate production test final report, DOE Award no:DE-NT0006553, Prepared for USDOE, National Energy Technology Laboratory, 2013(204 pages). [18] S. Adisasmito, R.J. Frank, E.D. Sloan, Hydrates of carbon dioxide and methane mixtures, J. Chem. Eng. Data 36(1991) 66-71. [19] D. Sun, J. Ripmeester, P. Englezos, Phase equilibria for the CO2/CH4/N2/H2O system in the hydrate region under conditions relevant to storage of CO2 in depleted natural gas reservoirs, J. Chem. Eng. Data 61(2016) 4061-4067. [20] D. Sun, P. Englezos, Determination of CO2 storage density in a partially water saturated lab reservoir containing CH4 from injection of captured flue gas by gas hydrate crystallization, Can. J. Chem. Eng. 95(1) (2017) 69-76. [21] R. Boswell, D. Schoderbek, T.S. Collett, S. Ohtsuki, M. White, B.J. Anderson, The Iġnik Sikumi Field Experiment, Alaska North Slope:Design, operations, and implications for CO2-CH4 exchange in gas hydrate reservoirs, Energy Fuel 31(2017) 140-153. [22] P. Englezos, M. Messah, J. Chau, Gas recovery through the injection of carbon dioxide or concentrated flue gas in a natural gas hydrate reservoir, Offshore Technology Conference Asia, USDoE, National Energy Technology Laboratory, Kuala Lumpur, Malaysia, 20-23 March, 2018, https://doi.org/10.4043/28374-MS. [23] D.H. Smith, K. Seshadri, J.W. Wilder, Assessing the thermodynamic feasibility of methane hydrate into CO2 hydrate in porous media, J. Energy Environ. Res. 1(1) (2001) 101-116. [24] H. Lee, Y. Seo, Y.T. Seo, I.L. Moudrakovski, J.A. Ripmeester, Recovering methane from solid methane hydrate with carbon dioxide, Angew. Chem. Int. Ed. 42(41) (2003) 5048-5051. [25] V.Sh. Shagapov, M.K. Khasanov, Regimes of methane recovery from gas hydrate on injection of "warm" CO2 into a porous medium, High Temp. 55(5) (2017) 737-745. [26] P.G. Brewer, Ed.T. Peltzer, P.M. Walz, E.K. Coward, L.A. Stern, S.H. Kirby, J. Pinkston, Deep-sea field test of the CH4 hydrate to CO2 hydrate spontaneous conversion hypothesis, Energy Fuel 28(11) (2014) 7061-7069. [27] S.A. Bagherzadeh, S. Alavi, J.A. Ripmeester, P. Englezos, Formation of methane nanobubbles during hydrate decomposition and their effect on hydrate growth, J. Chem. Phys. 142(21) (2015) (214701-8). [28] M. Cha, K. Shin, H. Lee, I.L. Moudrakovski, J.A. Ripmeester, Kinetics of methane hydrate replacement with carbon dioxide and nitrogen gas mixture using in situ NMR spectroscopy, Environ. Sci. Technol. 49(2015) 1964-1971. [29] M. Yang, Z.R. Chong, J. Zheng, Y. Song, P. Linga, Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates, Renew. Sust. Energ. Rev. 74(2017) 1346-1360. [30] B. Kvamme, Thermodynamic limitations of the CO2/N2 mixture injected into CH4 hydrate in the Ignik Sikumi field trial, J. Chem. Eng. Data 61(2016) 1280-1295. [31] S.S. Tupsakhare, G.C. Fitgerald, M.J. Castaldi, Thermally assisted dissociation of methane hydrates and the impact of CO2 injection, Ind. Eng. Chem. Res. 55(2016) 10465-10476. [32] Y.P. Handa, A calorimetric study of naturally occurring gas hydrates, Ind. Eng. Chem. Res. 27(1988) 872-874. [33] P. Linga, C. Haligva, S.-C. Nam, J.A. Ripmeester, P. Englezos, Recovery of methane from hydrate formed in a variable volume bed of silica sand particles, Energy Fuel 23(11) (2009) 5508-5516. [34] C. Haligva, P. Linga, J. Ripmeester, P. Englezos, Recovery of CH4 from a variable volume bed of silica sand/hydrate by depressurization, Energy Fuel 24(5) (2010) 2947-2955. [35] Bhown, Freeman, Analysis and status of post-combustion carbon dioxide capture technologies, Environ. Sci. Technol. 45(2011) 8624-8632. [36] J.M. Prausnitz, R.N. Lichtenthaler, E.G. deAzevedo, Molecular Thermodynamics of Fluid Phase Equilibria, 3rd edition McGraw Hill, 1998. [37] Z. Yin, Z.R. Ching, H.K. Tan, P. Linga, Review of gas hydrate dissociation kinetic models for energy recovery, J. Nat. Gas Sci. Eng. 35(2016) 1362-1387. [38] A. Gupta, J. Lachance, E.D. Sloan, C. Koh, Measurements of methane hydrate heat of dissociation using high pressure differential scanning calorimetry, Chem. Eng. Sci. 63(2008) 5848-5853. [39] J.G. Vlahakis, H.-S. Chen, M.S. Suwandi, A.J. Barduhn, The growth rate of ice crystals:Properties of carbon dioxide hydrate, a review of properties of 51 gas hydrates, Syracuse University Research and Development Report 830; Prepared for the Office of Saline Water, US Department of the Interior, November 1972. [40] M.M. Côté, J.F. Wright, Preliminary assessment of the geological potential for sequestration of CO2 as gas hydrate in the Alberta portion of the Western Canada Sedimentary Basin, Geol. Surv. Can. Open File 6582(2013). [41] O.Y. Zatsepina, M. Pooladi-Darvish, Storage of CO2 hydrate in shallow gas reservoirs:Pre- and post-injection periods, Greenhouse Gases Sci. Technol. 1(3) (2011) 223-236. [42] D. Sun, P. Englezos, Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions, Int. J. Greenhouse Gas Control 25(2014) 1-8. [43] D. Sun, P. Englezos, CO2 storage capacity in laboratory simulated depleted hydrocarbon reservoirs-Impact of salinity and additive, J. Nat. Gas Sci. Eng. 35(1) (2016) 1416-1425. [44] M. Massah, D. Sun, H. Sharifi, P. Englezos, Demonstration of gas-hydrate assisted carbon dioxide sequestration through horizontal injection in lab-scale reservoir, J. Chem. Thermodyn. 117(2017) 106-112. |
[1] | Chuang Liang, Zhihao Liu, Baochang Sun, Haikui Zou, Guangwen Chu. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 61-68. |
[2] | Minjie Shi, Nianting Chen, Yue Zhao, Cheng Yang, Chao Yan. Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 118-127. |
[3] | Yanli Zhang, Zhengkun Hou, Dong Yao, Xiaomin Qiu, Hongru Zhang, Peizhe Cui, Yinglong Wang, Jun Gao, Zhaoyou Zhu, Limei Zhong. Energy, exergy, economic and environmental comprehensive analysis and multi-objective optimization of a sustainable zero liquid discharge integrated process for fixed-bed coal gasification wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 341-354. |
[4] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
[5] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[6] | Xinhao Li, Qing Ye, Jinlong Li, Lingqiang Yan, Xue Jian, Licheng Xie, Jianyu Zhang. Investigation of energy-efficient heat pump assisted heterogeneous azeotropic distillation for separating of acetonitrile/ethyl acetate/n-hexane mixture [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 20-33. |
[7] | Jianhui Zhou, Guohao Du, Jianfeng Hu, Xin Lai, Shan Liu, Zhengguo Zhang. The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 11-21. |
[8] | Fang Chen, Tao Zhou, Lijie Li, Chongwei An, Jun Li, Duanlin Cao, Jianlong Wang. Morphology prediction of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) crystal in different solvent systems using modified attachment energy model [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 181-193. |
[9] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 224-233. |
[10] | Jun Li, Liqiang Zhang, Xiao Zhu, Mengze Zhang, Tai Feng, Xiqiang Zhao, Tao Wang, Zhanlong Song, Chunyuan Ma. Systematic investigation of SO2 adsorption and desorption by porous powdered activated coke: Interaction between adsorption temperature and desorption energy consumption [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 140-148. |
[11] | Yishuang Wang, Na Li, Mingqiang Chen, Defang Liang, Chang Li, Quan Liu, Zhonglian Yang, Jun Wang. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 176-190. |
[12] | Nouman Ahmad, Jianqiang Deng, Muhammad Adnan. Numerical investigation for the suitable choice of bubble diameter correlation for EMMS/bubbling drag model [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 254-270. |
[13] | Xiaomin Qiu, Yuanyuan Shen, Zhengkun Hou, Qi Wang, Zhaoyou Zhu, Yinglong Wang, Jingwei Yang, Jun Gao. Mechanism analysis of solvent selectivity and energy-saving optimization in vapor recompression-assisted extractive distillation for separation of binary azeotrope [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 271-279. |
[14] | Xinyu Yan, Bobo Wang, Hongxia Liang, Jie Yang, Jie Zhao, Fabrice Ndayisenga, Hongxun Zhang, Zhisheng Yu, Zhi Qian. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 239-245. |
[15] | Danlong Li, Yannan Liang, Hainan Wang, Ruoqian Zhou, Xiaokang Yan, Lijun Wang, Haijun Zhang. Investigation on the effects of fluid intensification based preconditioning process on the decarburization enhancement of fly ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 275-283. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 229
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 468
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||