Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 2180-2188.DOI: 10.1016/j.cjche.2019.02.034
Previous Articles Next Articles
Niall J English, Mohammad Reza Ghaani
Received:
2018-12-01
Revised:
2019-02-01
Online:
2019-12-04
Published:
2019-09-28
Contact:
Niall J English
Niall J English, Mohammad Reza Ghaani
通讯作者:
Niall J English
Niall J English, Mohammad Reza Ghaani. Hybrid versus global thermostatting in molecular-dynamics simulation of methane-hydrate crystallisation[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2180-2188.
Niall J English, Mohammad Reza Ghaani. Hybrid versus global thermostatting in molecular-dynamics simulation of methane-hydrate crystallisation[J]. 中国化学工程学报, 2019, 27(9): 2180-2188.
[1] Y.F. Makogon, Hydrates of Hydrocarbons, PennWell Books, Tulsa, Oklahoma, 1997. [2] N.J. English, J.M.D. MacElroy, Perspectives on molecular simulation of clathrate hydrates:Progress, prospects and challenges, Chem. Eng. Sci. 121(2015) 133. [3] G.J. MacDonald, The future of methane as an energy resource, Annu. Rev. Energy 15(1990) 53-83. [4] K.A. Kvenvolden, Methane hydrate-A major reservoir of carbon in the shallow geosphere? Chem. Geol. 71(1988) 41-51. [5] P.G. Brewer, F.M. Orr, G. Friederich, K.A. Kvenvolden, D.L. Orange, Gas hydrate formation in the deep sea:In situ experiments with controlled release of methane, natural gas and carbon dioxide, Energy Fuel 12(1998) 183-188. [6] Y.-T. Tung, L.-J. Chen, Y.-P. Chen, S.-T. Lin, In situ methane recovery and carbon dioxide sequestration in methane hydrates:A molecular dynamics simulation study, J. Phys. Chem. B 115(2011) 15295-15302. [7] J.S. Tse, M.L. Klein, I.R. McDonald, Molecular dynamics studies of ice Ic and the structure I clathrate hydrate of methane, J. Phys. Chem. 87(1983) 4198-4203. [8] J.S. Tse, M.L. Klein, I.R. McDonald, Computer simulation studies of the structure I clathrate hydrates of methane, tetrafluoromethane, cyclopropane, and ethylene oxide, J. Chem. Phys. 81(1984) 6146-6153. [9] J.S. Tse, W.R. McKinnon, M. Marchi, Thermal expansion of structure I ethylene oxide hydrate, J. Phys. Chem. 91(1987) 4188-4193. [10] A.A. Chialvo, M. Houssa, P.T. Cummings, Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates, J. Phys. Chem. B 106(2002) 442-451. [11] J.S. Tse, V.P. Shpakov, V.P. Murashov, V.R. Belosludov, The low frequency vibrations in clathrate hydrates, J. Chem. Phys. 107(1997) 9271-9274. [12] J.S. Tse, V.P. Shpakov, V.R. Belosludov, F. Trouw, Y.P. Handa, W. Press, Coupling of localized guest vibrations with the lattice modes in clathrate hydrates, Europhys. Lett. 54(2001) 354-360. [13] J.S. Tse, Dynamical properties and stability of clathrate hydrates, Ann. N. Y. Acad. Sci. 715(1994) 187-206. [14] R. Susilo, S. Alavi, I.L. Moudrakovski, P. Englezos, J.A. Ripmeester, Guest-host hydrogen bonding in structure H clathrate hydrates, ChemPhysChem 10(2009) 824. [15] S. Alavi, K. Udachin, J.A. Ripmeester, Effect of guest-host hydrogen bonding on the structures and properties of clathrate hydrates, Chem. Eur. J. 16(2010) 1017. [16] P.D. Gorman, N.J. English, J.M.D. MacElroy, Dynamical and energetic properties of hydrogen and hydrogen-tetrahydrofuran clathrate hydrates, Phys. Chem. Chem. Phys. 13(2011), 19780. [17] C.J. Waldron, M. Lauricella, N.J. English, Structural and dynamical properties of methane clathrate hydrates from molecular dynamics:Comparison of atomistic and more coarse-grained potential models, Fluid Phase Equilib. 413(2016) 235. [18] C.J. Burnham, N.J. English, Librational dynamics in water, sI and sII clathrate hydrates and ice Ih:Molecular-dynamics insights, J. Chem. Phys. 144(2016), 051101. [19] C.J. Burnham, N.J. English, Study of clathrate hydrates via equilibrium moleculardynamics simulation employing polarisable and non-polarisable, rigid and flexible water models, J. Chem. Phys. 144(2016), 164503. [20] N.J. English, J.S. Tse, Dynamical properties of hydrogen sulphide motion in its clathrate hydrate from ab-initio and classical isobaric-isothermal molecular dynamics, J. Phys. Chem. A 115(2011) 6226. [21] M. Hiratsuka, R. Ohmura, A.K. Sum, K. Yasuoka, Molecular vibrations of methane molecules in the structure I clathrate hydrate from ab initio molecular dynamics simulation, J. Chem. Phys. 136(2012), 044508. [22] M. Hiratsuka, R. Ohmura, A.K. Sum, K. Yasuoka, Vibrational modes of methane in the structure H clathrate hydrate from ab initio molecular dynamics simulation, J. Chem. Phys. 137(2012), 144306. [23] N.J. English, J.M.D. MacElroy, Structural and dynamical properties of methane clathrate hydrates, J. Comput. Chem. 24(2003) 1569. [24] N.J. English, J.S. Tse, Mechanisms for thermal conduction in methane hydrate, Phys. Rev. Lett. 103(2009), 015901. [25] N.J. English, R. Gallagher, J.S. Tse, Thermal conductivity in amorphous ices from molecular dynamics, Phys. Rev. B 82(2010), 092201. [26] N.J. English, Effect of electrostatics techniques on the estimation of thermal conductivity via equilibrium molecular dynamics simulation:Application to methane hydrate, Mol. Phys. 106(2008) 1887. [27] N.J. English, J.S. Tse, Guest and host contributions towards thermal conduction in various polymorphs of methane hydrate, Comput. Mater. Sci. 49(2010) S176. [28] N.J. English, P.D. Gorman, J.M.D. MacElroy, Thermal conductivity of hydrogen hydrate, J. Chem. Phys. 136(2012), 044501. [29] T.J. Frankcombe, G.-J. Kroes, Molecular dynamics simulations of type-sII hydrogen clathrate hydrate close to equilibrium conditions, J. Phys. Chem. C 111(2007) 13044-13052. [30] P.D. Gorman, N.J. English, J.M.D. MacElroy, Dynamical cage behaviour and hydrogen migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates, J. Chem. Phys. 136(2012), 044506. [31] H. Cao, N.J. English, J.M.D. MacElroy, Diffusive hydrogen inter-cage migration in hydrogen and hydrogen-tetrahydrofuran clathrate hydrates, J. Chem. Phys. 138(2013), 094507. [32] C.J. Burnham, Z. Futera, N.J. English, Quantum and classical inter-cage hopping of hydrogen molecules in clathrate hydrate:Temperature and cage-occupation effects, Phys. Chem. Chem. Phys. 19(2017) 717-728. [33] C.J. Burnham, N.J. English, Free-energy calculations of the intercage hopping barriers of hydrogen molecules in clathrate hydrates, J. Phys. Chem. C 120(2016) 16561-16567. [34] N.J. English, J.M.D. MacElroy, Theoretical studies of the kinetics of methane hydrate crystallization in external electromagnetic fields, J. Chem. Phys. 120(2004), 10247. [35] S.A. Bagherzadeh, P. Englezos, S. Alavi, J.A. Ripmeester, Molecular simulation of nonequilibrium methane hydrate decomposition process, J. Chem. Thermodyn. 44(1) (2012) 13-19. [36] J. Vatamanu, P.G. Kusalik, Molecular insights into the heterogeneous crystal growth of sI methane hydrate, J. Phys. Chem. B 110(2006), 15896. [37] J. Vatamanu, P.G. Kusalik, Unusual crystalline and polycrystalline structures in methane hydrates, J. Am. Chem. Soc. 128(2006), 15588. [38] J. Vatamanu, P.G. Kusalik, Heterogeneous crystal growth of methane hydrate on its sII [001] crystallographic face, J. Phys. Chem. B 112(2008) 2399. [39] S. Liang, P.G. Kusalik, Nucleation of gas hydrates within constant energy systems, J. Phys. Chem. B 117(2013) 1403-1410. [40] M. Lauricella, S. Meloni, S. Liang, N.J. English, P.G. Kusalik, G. Ciccotti, Clathrate structure-type recognition:Application to hydrate nucleation and crystallisation, J. Chem. Phys. 142(2015), 244503. [41] N.J. English, J.K. Johnson, C.E. Taylor, Molecular dynamics simulations of methane hydrate dissociation, J. Chem. Phys. 123(2005), 244503. [42] N.J. English, M. Lauricella, S. Meloni, Massively-parallel molecular dynamics simulation of clathrate hydrate precursors at planar water-methane interfaces:Insights into heterogeneous nucleation, J. Chem. Phys. 140(2014), 204714. [43] S.W. Rick, S.J. Stuart, B.J. Berne, Dynamical fluctuating charge force fields:Application to liquid water, J. Chem. Phys. 101(1994) 6141. [44] J.-A. Garate, N.J. English, J.M.D. MacElroy, Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes, J. Chem. Phys. 131(11) (2009), 114508. [45] N.J. English, D.G. Carroll, Prediction of Henry's law constants by a quantitative structure property relationship and neural networks, J. Chem. Inf. Comput. Sci. 41(2001) 1150. [46] J. Lekner, Summation of dipolar fields in simulated liquid-vapour interfaces, Physica A 157(1989) 826. [47] J. Lekner, Summation of Coulomb fields in computer-simulated disordered systems, Physica A 176(1991) 485. [48] N. Grønbech-Jensen, Lekner summation of long range interactions in periodic systems, Int. J. Mod. Phys. 8(1997) 1287. [49] N.J. English, J.M.D. MacElroy, Atomistic simulations of liquid water using Lekner electrostatics, Mol. Phys. 100(2002) 3753. [50] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987. [51] C.R. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J. 1(2) (1955) 264-270. [52] W.R. Gambill, Predict diffusion coefficient, D. Chem. Eng. NY 65(1958) 125. [53] J.W. Christian, The Theory of Transformations in Metals and Alloys, Part I:Equilibrium and General Kinetic Theory, 2nd ed. Pergamon, 1981. [54] M. von Stackelberg, H.R. Müller, Feste gas hydrate II, Z. Electrochem. 58(1954) 25. |
[1] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[2] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
[3] | Pan Huang, Zekai Zhang, Yuxin Chen, Changwei Liu, Yong Zhang, Cheng Lian, Yajun Ding, Honglai Liu. Multi-scale simulation of diffusion behavior of deterrent in propellant [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 29-35. |
[4] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[5] | Fang Chen, Tao Zhou, Lijie Li, Chongwei An, Jun Li, Duanlin Cao, Jianlong Wang. Morphology prediction of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) crystal in different solvent systems using modified attachment energy model [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 181-193. |
[6] | Haolei Zhang, Mingcan Zhao, Yanping Li, Chengxiang Li, Wei Ge. Concentration fluctuation caused by reaction-diffusion coupling near catalytic active sites [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 254-263. |
[7] | Qingxia Xiong, Ying Ren, Yufei Xia, Guanghui Ma, Reiji Noda, Wei Ge. Molecular dynamics simulations of ovalbumin adsorption at squalene/water interface [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 369-378. |
[8] | Luchao Jin, Yongming He, Guobing Zhou, Qiuhao Chang, Liangliang Huang, Xingru Wu. Natural gas density under extremely high pressure and high temperature: Comparison of molecular dynamics simulation with corresponding state model [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 2-9. |
[9] | Mingjie Wei, Yong Wang. Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 67-74. |
[10] | Ali Hatami, Iman Salahshoori, Niloufar Rashidi, Danial Nasirian. The effect of ZIF-90 particle in Pebax/Psf composite membrane on the transport properties of CO2, CH4 and N2 gases by Molecular Dynamics Simulation method [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2267-2284. |
[11] | Xin Zheng, Shuai Ban, Bei Liu, Guangjin Chen. Strain-controlled graphdiyne membrane for CO2/CH4 separation: Firstprinciple and molecular dynamic simulation [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1898-1903. |
[12] | Golchehreh Bayat, Roozbeh Saghatchi, Jafar Azamat, Alireza Khataee. Separation of methane from different gas mixtures using modified silicon carbide nanosheet: Micro and macro scale numerical studies [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1268-1276. |
[13] | Liang Yang, Xin Wang, Daoping Liu, Guomin Cui, Binlin Dou, Juan Wang, Shuqing Hao. Accelerated methane storage in clathrate hydrates using surfactantstabilized suspension with graphite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1112-1119. |
[14] | Kefeng Yan, Xiaosen Li, Zhaoyang Chen, Yu Zhang, Chungang Xu, Zhiming Xia. Methane hydrate formation and dissociation behaviors in montmorillonite [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1212-1218. |
[15] | Jiahui Li, Yudan Zhu, Yumeng Zhang, Qingwei Gao, Wei Zhu, Xiaohua Lu, Yijun Shi. Extra low friction coefficient caused by the formation of a solid-like layer: A new lubrication mechanism found through molecular simulation of the lubrication of MoS2 nanoslits [J]. Chin.J.Chem.Eng., 2018, 26(12): 2412-2419. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 82
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||