Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (3): 67-74.DOI: 10.1016/j.cjche.2020.10.028
Previous Articles Next Articles
Mingjie Wei, Yong Wang
Received:
2020-08-30
Revised:
2020-10-27
Online:
2021-05-13
Published:
2021-03-28
Contact:
Mingjie Wei
Supported by:
Mingjie Wei, Yong Wang
通讯作者:
Mingjie Wei
基金资助:
Mingjie Wei, Yong Wang. Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 67-74.
Mingjie Wei, Yong Wang. Structure and dynamics of water in TiO2 nano slits: The influence of interfacial interactions and pore sizes[J]. 中国化学工程学报, 2021, 29(3): 67-74.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.10.028
[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37-38. [2] M.A. Henderson, A surface science perspective on photocatalysis, Surf. Sci. Rep. 66 (2011) 185-297. [3] Y. Zhang, Y. Zhu, A. Wang, Q. Gao, Y. Qin, Y. Chen, X. Lu, Progress in molecularsimulation-based research on the effects of interface-induced fluid microstructures on flow resistance, Chin. J. Chem. Eng. 27 (2019) 1403-1415. [4] W. Langel, Car-Parrinello simulation of H2O dissociation on rutile, Surf. Sci. 496 (2002) 141-150. [5] L.A. Harris, A.A. Quong, Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2(110), Phys. Rev. Lett. 93 (2004) 086105. [6] A. Tilocca, A. Selloni, Structure and reactivity of water layers on defect-free and fefective anatase TiO2(101) surfaces, J. Phys. Chem. B 108 (2004) 4743-4751. [7] Z. Zhang, P. Fenter, L. Cheng, N.C. Sturchio, M.J. Bedzyk, M. Predota, A. Bandura, J.D. Kubicki, S.N. Lvov, P.T. Cummings, A.A. Chialvo, M.K. Ridley, P. Bénézeth, L. Anovitz, D.A. Palmer, M.L. Machesky, D.J. Wesolowski, Ion adsorption at the rutile water interface: Linking molecular and macroscopic properties, Langmuir 20 (2004) 4954-4969. [8] J.P. Fitts, M.L. Machesky, D.J. Wesolowski, X. Shang, J.D. Kubicki, G.W. Flynn, T. F. Heinz, K.B. Eisenthal, Second-harmonic generation and theoretical studies of protonation at the water/α-TiO2 interface, Chem. Phys. Lett. 411 (2005) 399-403. [9] M. Predota, L. Vlček, Comment on Parts 1 and 2 of the Series “Electric double layer at the rutile (110) surface”, J. Phys. Chem. B 111 (2007) 1245-1247. [10] Z. Zhang, P. Fenter, N.C. Sturchio, M.J. Bedzyk, M.L. Machesky, D.J. Wesolowski, Structure of rutile TiO2 in water and Rb+ at pH 12: Inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements, Surf. Sci. 601 (2007) 1129-1143. [11] W. Liu, J.-G. Wang, W. Li, X. Guo, L. Lu, X. Lu, X. Feng, C. Liu, Z. Yang, A shortcut for evaluating activities of TiO2 facets: Water dissociative chemisorption on TiO2-B (100) and (001), PCCP 12 (2010) 8721-8727. [12] R.S. Kavathekar, P. Dev, N.J. English, J.M.D. MacElroy, Molecular dynamics study of water in contact with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface, Mol. Phys. 109 (2011) 1649-1656. [13] S. Tan, H. Feng, Y. Ji, Y. Wang, J. Zhao, A. Zhao, B. Wang, Y. Luo, J. Yang, J.G. Hou, Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2(110)-1×1 surface, J. Am. Chem. Soc. 134 (2012) 9978-9985. [14] P.J.D. Lindan, C. Zhang, Exothermic water dissociation on the rutile TiO2(110) surface, Phys. Rev. B 72 (2005) 075439. [15] P.M. Kowalski, B. Meyer, D. Marx, Composition, structure, and stability of the rutile TiO2(110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption, Phys. Rev. B 79 (2009) 115410. [16] P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications, Angew. Chem. Int. Ed. 50 (2011) 2904-2939. [17] E. Mamontov, L. Vlcek, D.J. Wesolowski, P.T. Cummings, W. Wang, L.M. Anovitz, J. Rosenqvist, C.M. Brown, V. Garcia Sakai, Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations, J. Phys. Chem. C 111 (2007) 4328-4341. [18] E. Mamontov, D.J. Wesolowski, L. Vlcek, P.T. Cummings, J. Rosenqvist, W. Wang, D.R. Cole, Dynamics of hydration water on rutile studied by backscattering neutron spectroscopy and molecular dynamics simulation, J. Phys. Chem. C 112 (2008) 12334-12341. [19] E. Mamontov, L. Vlcek, D.J. Wesolowski, P.T. Cummings, J. Rosenqvist, W. Wang, D.R. Cole, L.M. Anovitz, G. Gasparovic, Suppression of the dynamic transition in surface water at low hydration levels: A study of water on rutile, Phys. Rev. E 79 (2009) 051504. [20] Q. Gravndyan, O.A. Akbari, D. Toghraie, A. Marzban, R. Mashayekhi, R. Karimi, F. Pourfattah, The effect of aspect ratios of rib on the heat transfer and laminar water/TiO2 nanofluid flow in a two-dimensional rectangular microchannel, J. Mol. Liq. 236 (2017) 254-265. [21] M. Predota, P.T. Cummings, D.J. Wesolowski, Electric double layer at the rutile (110) surface. 3. Inhomogeneous viscosity and diffusivity measurement by computer simulations, J. Phys. Chem. C 111 (2007) 3071-3079. [22] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414 (2001) 188-190. [23] K. Koga, G.T. Gao, H. Tanaka, X.C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 412 (2001) 802-805. [24] F. Xu, Y. Song, M. Wei, Y. Wang, Water flow through interlayer channels of two-dimensional materials with various hydrophilicities, J. Phys. Chem. C 122 (2018) 15772-15779. [25] F. Xu, M. Wei, X. Zhang, Y. Song, W. Zhou, Y. Wang, How pore hydrophilicity influences water permeability? Research 2019 (2019) 10. [26] Y. Song, M. Wei, F. Xu, Y. Wang, Molecular simulations of water transport resistance in polyamide RO membranes: Interfacial and interior contributions, Engineering 6 (2020) 577-584. [27] A. Miao, M. Wei, F. Xu, Y. Wang, Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations, J. Membr. Sci. 604 (2020) 118087. [28] G. Zhou, L. Huang, A review of recent advances in computational and experimental analysis of first adsorbed water layer on solid substrate, Mol. Simul. 1-17 (2020). [29] M.J. Wei, L. Zhang, L. Lu, Y. Zhu, K.E. Gubbins, X. Lu, Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon: a molecular dynamics simulation study, PCCP 14 (2012) 16536-16543. [30] M.J. Wei, J. Zhou, X. Lu, Y. Zhu, W. Liu, L. Lu, L. Zhang, Diffusion of water molecules confined in slits of rutile TiO2(110) and graphite(0001), Fluid Phase Equilib. 302 (2011) 316-320. [31] A.V. Bandura, J.D. Kubicki, Derivation of force field parameters for TiO2 H2O systems from ab initio calculations, J. Phys. Chem. B 107 (2003) 11072-11081. [32] M. Alimohammadi, K.A. Fichthorn, A force field for the interaction of water with TiO2 surfaces, J. Phys. Chem. C 115 (2011) 24206-24214. [33] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A 105 (2001) 9396-9409. [34] E. Gonzalez Solveyra, E. de la Llave, V. Molinero, G.J.A.A. Soler-Illia, D.A. Scherlis, Structure, dynamics and phase behavior of water in TiO2 nanopores, J. Phys. Chem. C (2013) 3330-3342. [35] M. Predota, A.V. Bandura, P.T. Cummings, J.D. Kubicki, D.J. Wesolowski, A.A. Chialvo, M.L. Machesky, Electric double layer at the rutile (110) surface. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials, J. Phys. Chem. B 108 (2004) 12049-12060. [36] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors, Nano Lett. 12 (2012) 1690-1696. [37] J. Wang, Y. Zhu, J. Zhou, X.H. Lu, Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes, PCCP 6 (2004) 829-835. [38] S. Monti, A.C.T. van Duin, S.Y. Kim, V. Barone, Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: computational investigations in the gas phase and in solution, J. Phys. Chem. C 116 (2012) 5141-5150. [39] S.Y. Kim, N. Kumar, P. Persson, J. Sofo, A.C.T. van Duin, J.D. Kubicki, Development of a ReaxFF reactive force Ffeld for titanium dioxide/water systems, Langmuir 29 (2013) 7838-7846. [40] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91 (1987) 6269-6271. [41] B. Guillot, Y. Guissani, How to build a better pair potential for water, J. Chem. Phys. 114 (2001) 6720-6733. [42] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19. [43] T. Head-Gordon, G. Hura, Water structure from scattering experiments and simulation, Chem. Rev. 102 (2002) 2651-2670. [44] D.J. Wesolowski, J.O. Sofo, A.V. Bandura, Z. Zhang, E. Mamontov, M. Predota, N. Kumar, J.D. Kubicki, P.R.C. Kent, L. Vlcek, M.L. Machesky, P.A. Fenter, P.T. Cummings, L.M. Anovitz, A.A. Skelton, J. Rosenqvist, Comment on “Structure and dynamics of liquid water on rutile TiO2(110)”, Phys. Rev. B 85 (2012) 167401. [45] Y. Li, Z. Yang, N. Hu, R. Zhou, X. Chen, Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation, J. Chem. Phys. 138 (2013) 184703. [46] G. Zhou, C. Liu, L. Huang, Molecular dynamics simulation of first-adsorbed water layer at titanium dioxide surfaces, J. Chem. Eng. Data 63 (2018) 2420-2429. [47] A. Luzar, D. Chandler, Hydrogen-bond kinetics in liquid water, Nature 379 (1996) 55-57. [48] P. Mark, L. Nilsson, Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K, J. Phys. Chem. A 105 (2001) 9954-9960. [49] D. van der Spoel, P.J. van Maaren, P. Larsson, N. Tîmneanu, Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media, J. Phys. Chem. B 110 (2006) 4393-4398. [50] A. Chandra, Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions, Phys. Rev. Lett. 85 (2000) 768-771. [51] F.W. Starr, J.K. Nielsen, H.E. Stanley, Hydrogen-bond dynamics for the extended simple point-charge model of water, Phys. Rev. E 62 (2000) 579-587. [52] F.N. Keutsch, R.J. Saykally, Water clusters: Untangling the mysteries of the liquid, one molecule at a time, Proc. Natl. Acad. Sci. 98 (2001) 10533-10540. [53] P. Liu, E. Harder, B.J. Berne, Hydrogen-bond dynamics in the air water interface, J. Phys. Chem. B 109 (2005) 2949-2955. [54] R. Kumar, J.R. Schmidt, J.L. Skinner, Hydrogen bonding definitions and dynamics in liquid water, J. Chem. Phys. 126 (2007) 204107-204112. [55] V.P. Voloshin, Y.I. Naberukhin, Hydrogen bond lifetime distributions in computer-simulated water, J. Struct. Chem. 50 (2009) 78-89. [56] W. Cao, L. Huang, M. Ma, L. Lu, X. Lu, Water in narrow carbon nanotubes: Roughness promoted diffusion transition, J. Phys. Chem. C 122 (2018) 19124-19132. |
[1] | Kang Wang, Wei Tan, Liyan Liu. “Relay-mode” promoting permeation of water-based fire extinguishing agent in granular materials porous media stacks [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 98-112. |
[2] | Jingwen Jia, Yue Zhang, Liangsheng Duan, Quanping Wu, Yu Chen, Song Xue. An asymmetrically substituted dithieno[3,2-b:2',3'-d]pyrrole organic small-molecule hole-transporting material for high-performance perovskite solar cells [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 51-57. |
[3] | Zijun Li, Shubo Wang, Sai Yao, Xueke Wang, Weiwei Li, Tong Zhu, Xiaofeng Xie. Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 90-102. |
[4] | Zhengguo Xu, Xiaochong Wang, Shuying Sun. Performance of a synthetic resin for lithium adsorption in waste liquid of extracting aluminum from fly-ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 115-123. |
[5] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[6] | Zhen He, Yu Zhou, Yuxin Wang, Pingyi Guo, Wensen Jiang, Caizhen Yao, Xin Shu. Preparation and properties of Ni-W-P-TiO2 nanocomposite coatings developed by a sol-enhanced electroplating method [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 369-376. |
[7] | Fangyou Yan, Wei Li, Jinli Zhang. Simultaneous synthesis of heat-integrated water networks by a nonlinear program: Considering the wastewater regeneration reuse [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 402-411. |
[8] | Xi Wu, Shuaishuai Yang, Shiming Xu, Xinjie Zhang, Yujie Ren. Measurement and correlation of the solubility of sodium acetate in eight pure and binary solvents [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 474-484. |
[9] | Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu. Green hydrogen: A promising way to the carbon-free society [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 2-13. |
[10] | Yihan Yin, Aoqian Qiu, Hongxia Gao, Yanqing Na, Zhiwu Liang. Experimental study of the mass transfer behavior of carbon dioxide absorption into ternary phase change solution in a packed tower [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 135-142. |
[11] | Nan Li, Jing-Yu Kan, Chang-Yu Sun, Guang-Jin Chen. Hydrate formation from liquid CO2 in a glass beads bed [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 185-191. |
[12] | Q. Yang, A. Wang, J. Luo, W. Tang. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 202-215. |
[13] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
[14] | Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 282-296. |
[15] | Haofeng Wu, Yanhong Chao, Yan Jin, Duanjian Tao, Xiaowei Li, Jing Luo, Guohua Xia, Linhua Zhu, Wenshuai Zhu. Sustainable preparation of graphene-analogue boron nitride by ball-milling for adsorption of organic pollutants [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 73-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||