[1] X. Zhan, J. Jia, Z. Zhou, F. Wang, Influence of blending methods on the co-gasification reactivity of petroleum coke and lignite, Energ. Convers. Manage. 52(2011) 1810-1814. [2] Y. Khojasteh Salkuyeh, T.A. Adams, Integrated petroleum coke and natural gas polygeneration process with zero carbon emissions, Energy 91(2015) 479-490. [3] A.R. Brandt, M.S. Masnadi, J.G. Englander, J. Koomey, D. Gordon, Climate-wise choices in a world of oil abundance, Environ. Res. Lett. 13(2018) 044027. [4] C. Higman, S. Tam, Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels, Chem. Rev. 114(2014) 1673-1708. [5] W. Huo, Z. Zhou, X. Chen, Z. Dai, G. Yu, Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars, Bioresour. Technol. 159(2014) 143-149. [6] G. Wang, J. Zhang, G. Zhang, X. Ning, X. Li, Z. Liu, J. Guo, Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends, Energy 131(2017) 27-40. [7] L. Ren, J. Yang, F. Gao, J. Yan, Laboratory study on gasification reactivity of coals and petcokes in CO2/steam at high temperatures, Energy Fuel (2013) 5054-5068. [8] X. Zhan, Z. Zhou, F. Wang, Catalytic effect of black liquor on the gasification reactivity of petroleum coke, Appl. Energy 87(2010) 1710-1715. [9] T. Knorr, M. Kaiser, F. Glenk, B.J.M. Etzold, Shrinking core like fluid solid reactions-A dispersion model accounting for fluid phase volume change and solid phase particle size distributions, Chem. Eng. Sci. 69(2012) 492-502. [10] R.G. Kim, C.W. Hwang, C.H. Jeon, Kinetics of coal char gasification with CO2:Impact of internal/external diffusion at high temperature and elevated pressure, Appl. Energy 129(2014) 299-307. [11] Z. Ma, J. Bai, Z. Bai, L. Kong, Z. Guo, J. Yan, W. Li, Mineral transformation in char and its effect on coal char gasification reactivity at high temperatures, part 2:Char gasification, Energy Fuel 28(2014) 1846-1853. [12] G. Wang, J. Zhang, X. Hou, J. Shao, W. Geng, Study on CO(2) gasification properties and kinetics of biomass chars and anthracite char, Bioresour. Technol. 177(2015) 66-73. [13] L. Ding, Y. Gong, Y. Wang, F. Wang, G. Yu, Characterisation of the morphological changes and interactions in char, slag and ash during CO2 gasification of rice straw and lignite, Appl. Energy 195(2017) 713-724. [14] M. Troiano, T. Santagata, F. Montagnaro, P. Salatino, R. Solimene, Impact experiments of char and ash particles relevant to entrained-flow coal gasifiers, Fuel 202(2017) 665-674. [15] K. Wittig, P.A. Nikrityuk, S. Schulze, A. Richter, Three-dimensional modeling of porosity development during the gasification of a char particle, AIChE J. 63(2017) 1638-1647. [16] L. Ren, R. Wei, Y. Gao, Co-gasification reactivity of petcoke and coal at high temperature, Fuel 190(2017) 245-252. [17] J. Xiao, F. Li, Q. Zhong, J. Huang, B. Wang, Y. Zhang, Effect of high-temperature pyrolysis on the structure and properties of coal and petroleum coke, J. Anal. Appl. Pyrol. 117(2016) 64-71. [18] A.D. Lewis, E.G. Fletcher, T.H. Fletcher, CO2 gasification rates of petroleum coke in a pressurized flat-flame burner entrained-flow reactor, Energy Fuel 28(2014) 4447-4457. [19] W. Huo, Z. Zhou, F. Wang, G. Yu, Mechanism analysis and experimental verification of pore diffusion on coke and coal char gasification with CO2, Chem. Eng. J. 244(2014) 227-233. [20] G.H. Coetzee, R. Sakurovs, H.W.J.P. Neomagus, R.C. Everson, J.P. Mathews, J.R. Bunt, Particle size influence on the pore development of nanopores in coal gasification chars:From micron to millimeter particles, Carbon 112(2017) 37-46. [21] A. Runstedtler, R. Yandon, M. Duchesne, R. Hughes, P. Boisvert, Conversion of petroleum coke in a high-pressure entrained-flow gasifier:Comparison of computational fluid dynamics model and experiment, Energy Fuel 31(2017) 5561-5570. [22] M. Malekshahian, J.M. Hill, Kinetic analysis of CO2 gasification of petroleum coke at high pressures, Energy Fuel 25(2011) 4043-4048. [23] M.H. Sahraei, R. Yandon, M.A. Duchesne, R.W. Hughes, L.A. Ricardez-Sandoval, Parametric analysis using a reactor network model for petroleum coke gasification, Energy Fuel 29(2015) 7681-7688. [24] M.A. Duchesne, S. Champagne, R.W. Hughes, Dry petroleum coke gasification in a pilot-scale entrained-flow gasifier and inorganic element partitioning model, Energy Fuel 31(2017) 6658-6669. [25] J. Kopyscinski, R. Habibi, C.A. Mims, J.M. Hill, K2CO3-catalyzed CO2 gasification of ash-free coal:Kinetic study, Energy Fuel 27(2013) 4875-4883. [26] T. Popa, M. Fan, M.D. Argyle, R.B. Slimane, D.A. Bell, B.F. Towler, Catalytic gasification of a powder river basin coal, Fuel 103(2013) 161-170. [27] L. Ding, Z. Zhou, W. Huo, G. Yu, Comparison of steam-gasification characteristics of coal char and petroleum coke char in drop tube furnace, Chin. J Chem Eng 23(2015) 1214-1224. [28] H. Watanabe, K. Okazaki, Effect of minerals on surface morphologies and competitive reactions during char gasification in mixtures of O2 and CO2, P. Combust. Inst. 35(2015) 2363-2371. [29] L.S. Lobo, S.A.C. Carabineiro, Kinetics and mechanism of catalytic carbon gasification, Fuel 183(2016) 457-469. [30] Y. Li, H. Yang, J. Hu, X. Wang, H. Chen, Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification, Fuel 117(2014) 1174-1180. [31] R.C. Brown, Q. Liu, G. Norton, Catalytic effects observed during the co-gasification of coal and switchgrass, Biomass Bioenergy 18(2000) 499-506. [32] N. Ellis, M.S. Masnadi, D.G. Roberts, M.A. Kochanek, A.Y. Ilyushechkin, Mineral matter interactions during co-pyrolysis of coal and biomass and their impact on intrinsic char co-gasification reactivity, Chem. Eng. J. 279(2015) 402-408. [33] R. Habibi, J. Kopyscinski, M.S. Masnadi, J. Lam, J.R. Grace, C.A. Mims, J.M. Hill, Co-gasification of biomass and non-biomass feedstocks:Synergistic and inhibition effects of switchgrass mixed with sub-bituminous coal and fluid coke during CO2 gasification, Energy Fuel 27(2012) 494-500. [34] Z. Zhou, Q. Hu, X. Liu, G. Yu, F. Wang, Effect of iron species and calcium hydroxide on high-sulfur petroleum coke CO2 gasification, Energy Fuel 26(2012) 1489-1495. [35] M. Malekshahian, J.M. Hill, Potassium catalyzed CO2 gasification of petroleum coke at elevated pressures, Fuel Process. Technol. 113(2013) 34-40. [36] K. Jayaraman, I. Gokalp, Gasification characteristics of petcoke and coal blended petcoke using thermogravimetry and mass spectrometry analysis, Appl. Therm. Eng. 80(2015) 10-19. [37] V. Nemanova, A. Abedini, T. Liliedahl, K. Engvall, Co-gasification of petroleum coke and biomass, Fuel 117(2014) 870-875. [38] M.S. Masnadi, R. Habibi, J. Kopyscinski, J.M. Hill, X. Bi, C.J. Lim, et al., Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels, Fuel 117(2014) 1204-1214. [39] A. Gomez, N. Mahinpey, Kinetic study of coal steam and CO2 gasification:A new method to reduce interparticle diffusion, Fuel 148(2015) 160-167. [40] M. Liu, Z. Shen, J. Xu, Q. Liang, H. Liu, Experimental studies on CO2 gasification of petcoke particle swarm at high temperatures, AIChE J. 64(2018) 4009-4018. [41] B. Srinivas, N.R. Amundson, A single-particle char gasification model, AIChE J. 26(1980) 487-496. [42] F. Küster, P. Nikrityuk, M. Junghanns, S. Nolte, A. Tünnermann, R. Ackermann, B. Meyer, In-situ investigation of single particle gasification in a defined gas flow applying TGA with optical measurements, Fuel 194(2017) 544-556. [43] Z. Shen, Q. Liang, J. Xu, B. Zhang, D. Han, H. Liu, In situ experimental study on the combustion characteristics of captured chars on the molten slag surface, Combust. Flame 166(2016) 333-342. [44] Z. Shen, Q. Liang, J. Xu, B. Zhang, H. Liu, In-situ experimental study of CO2 gasification of char particles on molten slag surface, Fuel 160(2015) 560-567. [45] Z. Shen, J. Xu, H. Liu, Q. Liang, Modeling study for the effect of particle size on char gasification with CO2, AIChE J. 63(2017) 716-724. [46] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ:25 years of image analysis, Nat. Methods 9(2012) 671-675. [47] Y. Wang, S. Zhu, M. Gao, Z. Yang, L. Yan, Y. Bai, F. Li, A study of char gasification in H2O and CO2 mixtures:Role of inherent minerals in the coal, Fuel Process. Technol. 141(2016) 9-15. [48] M. Malekshahian, J.M. Hill, Effect of pyrolysis and CO2 gasification pressure on the surface area and pore size distribution of petroleum coke, Energy Fuel 25(2011) 5250-5256. [49] A. Sadezkya1, H. Muckenhuberb, H. Grotheb, R. Niessnera, U. Pöschla, Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information, Carbon (2005) 1731-1742. [50] C. Sheng, Char structure characterised by Raman spectroscopy and its correlations with combustion reactivity, Fuel (2007) 2316-2324. [51] M. Liu, Z. Shen, Q. Liang, J. Xu, H. Liu, Morphological evolution of a single char particle with a low ash fusion temperature during the whole gasification process, Energy Fuel 32(2018) 1550-1557. [52] B. Feng, S.K. Bhatia, Variation of the pore structure of coal chars during gasification, Carbon 41(2003) 507-523. |