Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2581-2586.DOI: 10.1016/j.cjche.2018.11.017
• Materials and Product Engineering • Previous Articles Next Articles
Yawei Shi1,2, Wei Zheng2, Hao Liu2, Liang Wang1,2, Hongwei Zhang1,2
Received:
2018-09-25
Revised:
2018-11-01
Online:
2020-01-17
Published:
2019-10-28
Contact:
Liang Wang
Supported by:
Yawei Shi1,2, Wei Zheng2, Hao Liu2, Liang Wang1,2, Hongwei Zhang1,2
通讯作者:
Liang Wang
基金资助:
Yawei Shi, Wei Zheng, Hao Liu, Liang Wang, Hongwei Zhang. Protein-derived nitrogen and sulfur co-doped carbon for efficient adsorptive removal of heavy metals[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2581-2586.
Yawei Shi, Wei Zheng, Hao Liu, Liang Wang, Hongwei Zhang. Protein-derived nitrogen and sulfur co-doped carbon for efficient adsorptive removal of heavy metals[J]. 中国化学工程学报, 2019, 27(10): 2581-2586.
[1] T. Wen, J. Wang, S. Yu, Z. Chen, T. Hayat, X. Wang, Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid, and dyes, ACS Sustain. Chem. Eng. 5(5) (2017) 4371-4380. [2] W. Yantasee, Y. Lin, G.E. Fryxell, K.L. Alford, B.J. Busche, C.D. Johnson, Selective removal of copper(II) from aqueous solutions using fine-grained activated carbon functionalized with amine, Ind. Eng. Chem. Res. 43(11) (2004) 2759-2764. [3] J. Tang, B. Mu, M. Zheng, A. Wang, One-step calcination of the spent bleaching earth for the efficient removal of heavy metal ions, ACS Sustain. Chem. Eng. 3(6) (2015) 1125-1135. [4] J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, X. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water:Preparation, application, and mechanism, Chemosphere 195(2018) 351-364. [5] K. Sunil, G. Karunakaran, S. Yadav, M. Padaki, V. Zadorozhnyy, R.K. Pai, Al-Ti2O6 a mixed metal oxide based composite membrane:A unique membrane for removal of heavy metals, Chem. Eng. J. 348(2018) 678-684. [6] B. Lam, S. Déon, N. Morin-Crini, G. Crini, P. Fievet, Polymer-enhanced ultrafiltration for heavy metal removal:Influence of chitosan and carboxymethyl cellulose on filtration performances, J. Clean. Prod. 171(2018) 927-933. [7] Z. Wang, A. Sim, J.J. Urban, B. Mi, Removal and recovery of heavy metal ions by twodimensional MoS2 nanosheets:Performance and mechanisms, Environ. Sci. Technol. 52(17) (2018) 9741-9748. [8] Z. Chen, Y. Liang, D. Jia, W. Chen, Z. Cui, X. Wang, Layered silicate RUB-15 for efficient removal of UO22+ and heavy metal ions by ion-exchange, Environ. Sci. Nano 4(9) (2017) 1851-1858. [9] A. Ma, A. Abushaikha, S.J. Allen, G. McKay, Ion exchange homogeneous surface diffusion modelling by binary site resin for the removal of nickel ions from wastewater in fixed beds, Chem. Eng. J. 358(2019) 1-10. [10] Y. Ge, Z. Li, Application of lignin and its derivatives in adsorption of heavy metal ions in water:A review, ACS Sustain. Chem. Eng. 6(5) (2018) 7181-7192. [11] V.K. Gupta, S. Agarwal, A.K. Bharti, H. Sadegh, Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal, J. Mol. Liq. 230(2017) 667-673. [12] H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution, Appl. Surf. Sci. 279(2013) 432-440. [13] S. Chen, J. Wang, Z. Wu, Q. Deng, W. Tu, G. Dai, Z. Zeng, S. Deng, Enhanced Cr(VI) removal by polyethylenimine- and phosphorus-codoped hierarchical porous carbons, J. Colloid Interface Sci. 523(2018) 110-120. [14] M. Naushad, T. Ahamad, B.M. Al-Maswari, A. Abdullah Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J. 330(2017) 1351-1360. [15] C.M. Babu, K. Binnemans, J. Roosen, Ethylenediaminetriacetic acid-functionalized activated carbon for the adsorption of rare earths from aqueous solutions, Ind. Eng. Chem. Res. 57(5) (2018) 1487-1497. [16] Y.F. Jia, B. Xiao, K.M. Thomas, Adsorption of metal ions on nitrogen surface functional groups in activated carbons, Langmuir 18(2) (2002) 470-478. [17] W. Shen, W. Fan, Nitrogen-containing porous carbons:Synthesis and application, J. Mater. Chem. A 1(4) (2013) 999-1013. [18] P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction, Energy Environ. Sci. 7(1) (2014) 442-450. [19] B. Xu, H. Duan, M. Chu, G. Cao, Y. Yang, Facile synthesis of nitrogen-doped porous carbon for supercapacitors, J. Mater. Chem. A 1(14) (2013) 4565-4570. [20] B. Wang, Y. Wang, Y. Peng, X. Wang, N. Wang, J. Wang, J. Zhao, Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage, Chem. Eng. J. 348(2018) 850-859. [21] M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol. 96(13) (2005) 1518-1521. [22] T. Bohli, A. Ouederni, Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase, Environ. Sci. Pollut. Res. Int. 23(16) (2016) 15852-15861. [23] D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review, Bioresour. Technol. 160(2014) 191-202. [24] L. Han, K.S. Ro, K. Sun, H. Sun, Z. Wang, J.A. Libra, B. Xing, New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants, Environ. Sci. Technol. 50(24) (2016) 13274-13282. [25] C.O. Tuck, E. Perez, I.T. Horvath, R.A. Sheldon, M. Poliakoff, Valorization of biomass:Deriving more value from waste, Science 337(6095) (2012) 695-699. [26] Z. Li, Z. Xu, X. Tan, H. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, D. Mitlin, Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors, Energy Environ. Sci. 6(3) (2013) 871. [27] H. Ma, C. Li, M. Zhang, J.-D. Hong, G. Shi, Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors, J. Mater. Chem. A 5(32) (2017) 17040-17047. [28] Y. Chen, S. Ji, H. Wang, V. Linkov, R. Wang, Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction, Int. J. Hydrog. Energy 43(10) (2018) 5124-5132. [29] H. Nishihara, H. Fujimoto, H. Itoi, K. Nomura, H. Tanaka, M.T. Miyahara, P.A. Bonnaud, R. Miura, A. Suzuki, N. Miyamoto, Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels, Carbon 129(2018) 854-862. [30] Y. Mine, Recent advances in the understanding of egg white protein functionality, Trends Food Sci. Technol. 6(7) (1995) 225-232. [31] H. Ding, J.S. Wei, H.M. Xiong, Nitrogen and sulfur co-doped carbon dots with strong blue luminescence, Nanoscale 6(22) (2014) 13817-13823. [32] C. Sun, D. Xu, D. Xue, Direct in situ ATR-IR spectroscopy of structural dynamics of NH4H2PO4 in aqueous solution, CrystEngComm 15(38) (2013) 7783-7791. [33] D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors, Adv. Funct. Mater. 19(3) (2009) 438-447. [34] A. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso, J. Tascón, Surface modification of nanocast ordered mesoporous carbons through a wet oxidation method, Carbon 62(2013) 193-203. [35] B. Xu, D. Zheng, M. Jia, G. Cao, Y. Yang, Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors, Electrochim. Acta 98(2013) 176-182. [36] W. Gao, X. Feng, T. Zhang, H. Huang, J. Li, W. Song, One-step pyrolytic synthesis of nitrogen and sulfur dual-doped porous carbon with high catalytic activity and good accessibility to small biomolecules, ACS Appl. Mater. Interfaces 6(21) (2014) 19109-19117. [37] C.B. Vidal, M. Seredych, E. Rodriguez-Castellon, R.F. Nascimento, T.J. Bandosz, Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase, J. Colloid Interface Sci. 449(2015) 180-191. [38] Z. Huang, P. Wu, B. Gong, Y. Dai, P.-C. Chiang, X. Lai, G. Yu, Efficient removal of Co2+ from aqueous solution by 3-aminopropyltriethoxysilane functionalized montmorillonite with enhanced adsorption capacity, PLoS One 11(7) (2016), e0159802. [39] G. Wang, J. Liu, X. Wang, Z. Xie, N. Deng, Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan, J. Hazard. Mater. 168(2-3) (2009) 1053-1058. [40] G. Abdi, A. Alizadeh, S. Zinadini, G. Moradi, Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid, J. Membr. Sci. 552(2018) 326-335. [41] M. Tan, X. Liu, W. Li, H. Li, Enhancing sorption capacities for copper (II) and lead (II) under weakly acidic conditions by L-tryptophan-functionalized graphene oxide, J. Chem. Eng. Data 60(5) (2015) 1469-1475. [42] N.F. Nejad, E. Shams, M. Amini, J. Bennett, Ordered mesoporous carbon CMK-5 as a potential sorbent forfuel desulfurization:Application to theremoval of dibenzothiophene and comparison with CMK-3, Microporous Mesoporous Mater. 168(2013) 239-246. [43] W. Wang, Chromium (VI) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption, Chemosphere 190(2018) 97-102. [44] X. Luo, J. Yuan, Y. Liu, C. Liu, X. Zhu, X. Dai, Z. Ma, F. Wang, Improved solid-phase synthesis of phosphorylated cellulose microsphere adsorbents for highly effective Pb2+ removal from water:Batch and fixed-bed column performance and adsorption mechanism, ACS Sustain. Chem. Eng. 5(6) (2017) 5108-5117. [45] E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280(2) (2004) 309-314. [46] M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater. 185(1) (2011) 140-147. [47] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol. 45(24) (2011) 10454-10462. [48] P. Thilagavathy, T. Santhi, Kinetics, isotherms and equilibrium study of Co(II) adsorption from single and binary aqueous solutions by acacia nilotica leaf carbon, Chin. J. Chem. Eng. 22(11-12) (2014) 1193-1198. [49] F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.J. Huang, J. Liu, Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite, J. Hazard. Mater. 270(2014) 1-10. [50] J.M. Gómez, E. Díez, I. Bernabé, P. Sáez, A. Rodríguez, Effective adsorptive removal of cobalt using mesoporous carbons synthesized by silica gel replica method, Environ. Process. 5(2) (2018) 225-242. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[5] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[8] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 146-152. |
[9] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[10] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[11] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 11-19. |
[12] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[13] | Yanli Zhang, Zhengkun Hou, Dong Yao, Xiaomin Qiu, Hongru Zhang, Peizhe Cui, Yinglong Wang, Jun Gao, Zhaoyou Zhu, Limei Zhong. Energy, exergy, economic and environmental comprehensive analysis and multi-objective optimization of a sustainable zero liquid discharge integrated process for fixed-bed coal gasification wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 341-354. |
[14] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[15] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 291
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 433
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||