[1] T. Wen, J. Wang, S. Yu, Z. Chen, T. Hayat, X. Wang, Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid, and dyes, ACS Sustain. Chem. Eng. 5(5) (2017) 4371-4380. [2] W. Yantasee, Y. Lin, G.E. Fryxell, K.L. Alford, B.J. Busche, C.D. Johnson, Selective removal of copper(II) from aqueous solutions using fine-grained activated carbon functionalized with amine, Ind. Eng. Chem. Res. 43(11) (2004) 2759-2764. [3] J. Tang, B. Mu, M. Zheng, A. Wang, One-step calcination of the spent bleaching earth for the efficient removal of heavy metal ions, ACS Sustain. Chem. Eng. 3(6) (2015) 1125-1135. [4] J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, X. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water:Preparation, application, and mechanism, Chemosphere 195(2018) 351-364. [5] K. Sunil, G. Karunakaran, S. Yadav, M. Padaki, V. Zadorozhnyy, R.K. Pai, Al-Ti2O6 a mixed metal oxide based composite membrane:A unique membrane for removal of heavy metals, Chem. Eng. J. 348(2018) 678-684. [6] B. Lam, S. Déon, N. Morin-Crini, G. Crini, P. Fievet, Polymer-enhanced ultrafiltration for heavy metal removal:Influence of chitosan and carboxymethyl cellulose on filtration performances, J. Clean. Prod. 171(2018) 927-933. [7] Z. Wang, A. Sim, J.J. Urban, B. Mi, Removal and recovery of heavy metal ions by twodimensional MoS2 nanosheets:Performance and mechanisms, Environ. Sci. Technol. 52(17) (2018) 9741-9748. [8] Z. Chen, Y. Liang, D. Jia, W. Chen, Z. Cui, X. Wang, Layered silicate RUB-15 for efficient removal of UO22+ and heavy metal ions by ion-exchange, Environ. Sci. Nano 4(9) (2017) 1851-1858. [9] A. Ma, A. Abushaikha, S.J. Allen, G. McKay, Ion exchange homogeneous surface diffusion modelling by binary site resin for the removal of nickel ions from wastewater in fixed beds, Chem. Eng. J. 358(2019) 1-10. [10] Y. Ge, Z. Li, Application of lignin and its derivatives in adsorption of heavy metal ions in water:A review, ACS Sustain. Chem. Eng. 6(5) (2018) 7181-7192. [11] V.K. Gupta, S. Agarwal, A.K. Bharti, H. Sadegh, Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal, J. Mol. Liq. 230(2017) 667-673. [12] H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution, Appl. Surf. Sci. 279(2013) 432-440. [13] S. Chen, J. Wang, Z. Wu, Q. Deng, W. Tu, G. Dai, Z. Zeng, S. Deng, Enhanced Cr(VI) removal by polyethylenimine- and phosphorus-codoped hierarchical porous carbons, J. Colloid Interface Sci. 523(2018) 110-120. [14] M. Naushad, T. Ahamad, B.M. Al-Maswari, A. Abdullah Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J. 330(2017) 1351-1360. [15] C.M. Babu, K. Binnemans, J. Roosen, Ethylenediaminetriacetic acid-functionalized activated carbon for the adsorption of rare earths from aqueous solutions, Ind. Eng. Chem. Res. 57(5) (2018) 1487-1497. [16] Y.F. Jia, B. Xiao, K.M. Thomas, Adsorption of metal ions on nitrogen surface functional groups in activated carbons, Langmuir 18(2) (2002) 470-478. [17] W. Shen, W. Fan, Nitrogen-containing porous carbons:Synthesis and application, J. Mater. Chem. A 1(4) (2013) 999-1013. [18] P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction, Energy Environ. Sci. 7(1) (2014) 442-450. [19] B. Xu, H. Duan, M. Chu, G. Cao, Y. Yang, Facile synthesis of nitrogen-doped porous carbon for supercapacitors, J. Mater. Chem. A 1(14) (2013) 4565-4570. [20] B. Wang, Y. Wang, Y. Peng, X. Wang, N. Wang, J. Wang, J. Zhao, Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage, Chem. Eng. J. 348(2018) 850-859. [21] M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol. 96(13) (2005) 1518-1521. [22] T. Bohli, A. Ouederni, Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase, Environ. Sci. Pollut. Res. Int. 23(16) (2016) 15852-15861. [23] D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review, Bioresour. Technol. 160(2014) 191-202. [24] L. Han, K.S. Ro, K. Sun, H. Sun, Z. Wang, J.A. Libra, B. Xing, New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants, Environ. Sci. Technol. 50(24) (2016) 13274-13282. [25] C.O. Tuck, E. Perez, I.T. Horvath, R.A. Sheldon, M. Poliakoff, Valorization of biomass:Deriving more value from waste, Science 337(6095) (2012) 695-699. [26] Z. Li, Z. Xu, X. Tan, H. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, D. Mitlin, Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors, Energy Environ. Sci. 6(3) (2013) 871. [27] H. Ma, C. Li, M. Zhang, J.-D. Hong, G. Shi, Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors, J. Mater. Chem. A 5(32) (2017) 17040-17047. [28] Y. Chen, S. Ji, H. Wang, V. Linkov, R. Wang, Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction, Int. J. Hydrog. Energy 43(10) (2018) 5124-5132. [29] H. Nishihara, H. Fujimoto, H. Itoi, K. Nomura, H. Tanaka, M.T. Miyahara, P.A. Bonnaud, R. Miura, A. Suzuki, N. Miyamoto, Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels, Carbon 129(2018) 854-862. [30] Y. Mine, Recent advances in the understanding of egg white protein functionality, Trends Food Sci. Technol. 6(7) (1995) 225-232. [31] H. Ding, J.S. Wei, H.M. Xiong, Nitrogen and sulfur co-doped carbon dots with strong blue luminescence, Nanoscale 6(22) (2014) 13817-13823. [32] C. Sun, D. Xu, D. Xue, Direct in situ ATR-IR spectroscopy of structural dynamics of NH4H2PO4 in aqueous solution, CrystEngComm 15(38) (2013) 7783-7791. [33] D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors, Adv. Funct. Mater. 19(3) (2009) 438-447. [34] A. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso, J. Tascón, Surface modification of nanocast ordered mesoporous carbons through a wet oxidation method, Carbon 62(2013) 193-203. [35] B. Xu, D. Zheng, M. Jia, G. Cao, Y. Yang, Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors, Electrochim. Acta 98(2013) 176-182. [36] W. Gao, X. Feng, T. Zhang, H. Huang, J. Li, W. Song, One-step pyrolytic synthesis of nitrogen and sulfur dual-doped porous carbon with high catalytic activity and good accessibility to small biomolecules, ACS Appl. Mater. Interfaces 6(21) (2014) 19109-19117. [37] C.B. Vidal, M. Seredych, E. Rodriguez-Castellon, R.F. Nascimento, T.J. Bandosz, Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase, J. Colloid Interface Sci. 449(2015) 180-191. [38] Z. Huang, P. Wu, B. Gong, Y. Dai, P.-C. Chiang, X. Lai, G. Yu, Efficient removal of Co2+ from aqueous solution by 3-aminopropyltriethoxysilane functionalized montmorillonite with enhanced adsorption capacity, PLoS One 11(7) (2016), e0159802. [39] G. Wang, J. Liu, X. Wang, Z. Xie, N. Deng, Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan, J. Hazard. Mater. 168(2-3) (2009) 1053-1058. [40] G. Abdi, A. Alizadeh, S. Zinadini, G. Moradi, Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid, J. Membr. Sci. 552(2018) 326-335. [41] M. Tan, X. Liu, W. Li, H. Li, Enhancing sorption capacities for copper (II) and lead (II) under weakly acidic conditions by L-tryptophan-functionalized graphene oxide, J. Chem. Eng. Data 60(5) (2015) 1469-1475. [42] N.F. Nejad, E. Shams, M. Amini, J. Bennett, Ordered mesoporous carbon CMK-5 as a potential sorbent forfuel desulfurization:Application to theremoval of dibenzothiophene and comparison with CMK-3, Microporous Mesoporous Mater. 168(2013) 239-246. [43] W. Wang, Chromium (VI) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption, Chemosphere 190(2018) 97-102. [44] X. Luo, J. Yuan, Y. Liu, C. Liu, X. Zhu, X. Dai, Z. Ma, F. Wang, Improved solid-phase synthesis of phosphorylated cellulose microsphere adsorbents for highly effective Pb2+ removal from water:Batch and fixed-bed column performance and adsorption mechanism, ACS Sustain. Chem. Eng. 5(6) (2017) 5108-5117. [45] E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280(2) (2004) 309-314. [46] M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater. 185(1) (2011) 140-147. [47] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol. 45(24) (2011) 10454-10462. [48] P. Thilagavathy, T. Santhi, Kinetics, isotherms and equilibrium study of Co(II) adsorption from single and binary aqueous solutions by acacia nilotica leaf carbon, Chin. J. Chem. Eng. 22(11-12) (2014) 1193-1198. [49] F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.J. Huang, J. Liu, Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite, J. Hazard. Mater. 270(2014) 1-10. [50] J.M. Gómez, E. Díez, I. Bernabé, P. Sáez, A. Rodríguez, Effective adsorptive removal of cobalt using mesoporous carbons synthesized by silica gel replica method, Environ. Process. 5(2) (2018) 225-242. |