[1] L. Yang, M. Ye, B.-J. he, CFD simulation research on residential indoor air quality, Science of The Total Environment 472(2014) 1137-1144. [2] Y. Tominaga, T. Stathopoulos, CFD simulations of near-field pollutant dispersion with different plume buoyancies, Building and Environment 131(2018) 128-139. [3] M. Siddiqui, S. Jayanti, T. Swaminathan, CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation, Journal of Hazardous Materials 209-210(0) (2012) 177-185. [4] M. Pontiggia, M. Derudi, M. Alba, M. Scaioni, R. Rota, Hazardous gas releases in urban areas:Assessment of consequences through CFD modelling, J Hazard Mater 176(1-3) (2010) 589-596. [5] M. Pontiggia, G. Landucci, V. Busini, M. Derudi, M. Alba, M. Scaioni, S. Bonvicini, V. Cozzani, R. Rota, CFD model simulation of LPG dispersion in urban areas, Atmospheric Environment 45(24) (2011) 3913-3923. [6] P. Kumar, S.K. Singh, P. Ngae, A.-A. Feiz, G. Turbelin, Assessment of a CFD model for short-range plume dispersion:Applications to the Fusion Field Trial 2007(FFT-07) diffusion experiment, Atmospheric Research 197(Supplement C) (2017) 84-93. [7] F. Vendel, Modélisation de la dispersion atmosphérique en présence d'obstacles complexes:application à l'étude de sites industriels,Theses. Ecole Centrale de Lyon. 2011. [8] A. Tascikaraoglu, M. Uzunoglu, A review of combined approaches for prediction of short-term wind speed and power, Renewable and Sustainable Energy Reviews 34(2014) 243-254. [9] A. Pourhabib, J.Z. Huang, Y. Ding, Short-term wind speed forecast using measurements from multiple turbines in a wind farm, Technometrics 58(1) (2016) 138-147. [10] A. Borraccino, D. Schlipf, F. Haizmann, R. Wagner, Wind field reconstruction from nacelle-mounted lidar short-range measurements, Wind Energy Science 2(1) (2017) 269-283. [11] S. Raach, D. Schlipf, F. Haizmann, P.W. Cheng, Three dimensional dynamic model based wind field reconstruction from lidar data, Journal of Physics:Conference Series, 524, IOP Publishing. 2014, pp. 012005. [12] D.A. Fadare, The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria, Applied Energy 87(3) (2010) 934-942. [13] H. zhi Wang, G. qiang Li, G. bing Wang, J. chun Peng, H. Jiang, Y. tao Liu, Deep learning based ensemble approach for probabilistic wind power forecasting, Applied Energy 188(2017) 56-70. [14] C. Stock-Williams, P. Mazoyer, S. Combrexelle, Wind field reconstruction from lidar measurements at high-frequency using machine learning, Journal of Physics:Conference Series, 1102, IOP Publishing. 2018, pp. 012003. [15] P. Towers, B.L. Jones, Real-time wind field reconstruction from LiDAR measurements using a dynamic wind model and state estimation, Wind Energy 19(1) (2016) 133-150. [16] A. Kalmikov, G. Dupont, K. Dykes, C. Chan, Wind power resource assessment in complex urban environments:MIT campus case-study using CFD Analysis, 2010. [17] H.V. Ly, H.T. Tran, Modeling and control of physical processes using proper orthogonal decomposition, Mathematical and Computer Modelling 33(1) (2001) 223-236. [18] D. Alonso, A. Velazquez, J.M. Vega, A method to generate computationally efficient reduced order models, Computer Methods in Applied Mechanics and Engineering 198(33) (2009) 2683-2691. [19] A. Qamar, S. Sanghi, Steady supersonic flow-field predictions using proper orthogonal decomposition technique, Computers & Fluids 38(6) (2009) 1218-1231. [20] C. Jiang, Y.C. Soh, H. Li, H. Zhou, Physical field estimation from CFD database and sparse sensor observations, IEEE International Conference on Automation Science and Engineering 2015-Octob (2015) 1294-1299. [21] C. Jiang, Y.C. Soh, H. Li, Two-stage indoor physical field reconstruction from sparse sensor observations, Energy and Buildings 151(2017) 548-563. [22] L. Qin, S. Liu, T. Long, M.A. Shahzad, H.I. Schlaberg, S.A. Yan, Wind field reconstruction using dimension-reduction of CFD data with experimental validation, Energy 151(2018) 272-288. [23] P. Zhang, I. Nevat, G.W. Peters, F. Septier, M.A. Osborne, Spatial field reconstruction and sensor selection in heterogeneous sensor networks with stochastic energy harvesting, IEEE Transactions on Signal Processing 66(9) (2018) 2245-2257. [24] C. Jiang, Y.C. Soh, H. Li, Sensor placement by maximal projection on minimum eigenspace for linear inverse problems, IEEE Transactions on Signal Processing 64(21) (2016) 5595-5610. arXiv:1506.00747. [25] G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine:Theory and applications, Neurocomputing 70(1-3) (2006) 489-501. [26] J.R. Kalagnanam, U.M. Diwekar, An efficient sampling technique for off-line quality control, Technometrics 39(3) (1997) 308-319. [27] T.-T. Wong, W.-S. Luk, P.-A. Heng, Sampling with Hammersley and Halton points, Journal of graphics tools 2(2) (1997) 9-24. [28] CCPS, Source Models, chap. 2, Wiley-Blackwell. 2010, 15-125. ISBN 9780470938119. [29] K. McGrattan, S. Hostikka, R. McDermott, J. Floyd, C. Weinschenk, K. Overholt, Fire dynamics simulator technical reference guide volume 1:Mathematical model, NIST special publication 1018(1) (2013) 175. [30] Y. Mouilleau, A. Champassith, CFD simulations of atmospheric gas dispersion using the Fire Dynamics Simulator (FDS), Journal of Loss Prevention in the Process Industries 22(3) (2009) 316-323. [31] N.L. Ryder, J.A. Sutula, C.F. Schemel, A.J. Hamer, V.V. Brunt, Consequence modeling using the fire dynamics simulator, Journal of Hazardous Materials 115(1-3 SPEC. ISS.) (2004) 149-154. [32] D. Ma, W. Tan, Z. Zhang, J. Hu, Parameter identification for continuous point emission source based on Tikhonov regularization method coupled with particle swarm optimization algorithm, Journal of Hazardous Materials 325(28) (2017) 239-250. [33] S. Tauseef, D. Rashtchian, S. Abbasi, CFD-based simulation of dense gas dispersion in presence of obstacles, Journal of Loss Prevention in the Process Industries 24(4) (2011) 371-376. [34] F. Guillemin, H.-N. Nguyen, G. Sabiron, D. Di Domenico, M. Boquet, Real-time three dimensional wind field reconstruction from nacelle LiDAR measurements, Journal of Physics:Conference Series 1037(2018) 032037. |