Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (2): 502-517.DOI: 10.1016/j.cjche.2019.05.012
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Inn Shi Tan1, Man Kee Lam2,3, Henry Chee Yew Foo1, Steven Lim4, Keat Teong Lee5
Received:
2019-01-09
Revised:
2019-05-27
Online:
2020-05-21
Published:
2020-02-28
Contact:
Inn Shi Tan, Man Kee Lam
Supported by:
Inn Shi Tan1, Man Kee Lam2,3, Henry Chee Yew Foo1, Steven Lim4, Keat Teong Lee5
通讯作者:
Inn Shi Tan, Man Kee Lam
基金资助:
Inn Shi Tan, Man Kee Lam, Henry Chee Yew Foo, Steven Lim, Keat Teong Lee. Advances of macroalgae biomass for the third generation of bioethanol production[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 502-517.
Inn Shi Tan, Man Kee Lam, Henry Chee Yew Foo, Steven Lim, Keat Teong Lee. Advances of macroalgae biomass for the third generation of bioethanol production[J]. 中国化学工程学报, 2020, 28(2): 502-517.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.05.012
[1] W. Katinonkul, J.S. Lee, S.H. Ha, J.Y. Park, Enhancement of enzymatic digestibility of oil palm empty fruit bunch by ionic-liquid pretreatment, Energy. 47(2012) 11-16. [2] B. Petroleum, BP Statistical Review of World Energy. June 2018, British Petroleum, London, 2018. [3] I. Capellán-Pérez, M. Mediavilla, C. de Castro, Ó. Carpintero, L.J. Miguel, et al., Energy. 77(2014) 641-666. [4] IEA, International Energy Agency, World Energy Outlook 2009, 2009. [5] IEA, Resources to reserves 2013, https://www.iea.org/reports/resources-to-reserves-2013. [6] S. Kraan, Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production, Mitig. Adapt. Strateg. Glob. Chang. 18(2013) 27-46. [7] A. Zidanšek, R. Blinc, A. Jeglič, S. Kabashi, S. Bekteshi, I. Šlaus, Climate changes, biofuels and the sustainable future, Int. J. Hydrogen Energy. 34(2009) 6980-6983. [8] A. Kumar, K. Kumar, N. Kaushik, S. Sharma, S. Mishra, Renewable energy in India:Current status and future potentials, Renew. Sustain. Energy Rev. 14(2010) 2434-2442. [9] M. Guo, W. Song, J. Buhain, Bioenergy and biofuels:History, status, and perspective, Renew. Sust. Energ. Rev. 42(2015) 712-725. [10] J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels, Proc. Natl. Acad. Sci. 103(2006) 11206-11210. [11] U.S.D. of Energy, Strategic Plan for a Thriving and Sustainable Bioeconomy, https://www.energy.gov/sites/prod/files/2016/12/f34/beto_strategic_plan_december_2016_0.pdf 2016. [12] E.I. Administration, Independent Statistics & Analysis, U.S. Dep, Energy, 2017. https://www.eia.gov/energyexplained/?page=us_energy_transportation#tab1. [13] IEA, International Energy Agency, World Energy Outlook 2012, 2012. [14] L. Korzen, I.N. Pulidindi, A. Israel, A. Abelson, A. Gedanken, Single step production of bioethanol from the seaweed Ulva rigida using sonication, RSC Adv. 5(2015) 16223-16229. [15] R.F. Association, World Fuel EtOH Production, 2018. [16] S. Kumar, Biofuels Make a Comeback despite Tough Economy, World Watch Inst. Vis. a Sustain, World, 2011. [17] EIA, 2012 Brief:U.S. Ethanol Prices and Production Lower Compared to 2011, http://www.eia.gov/todayinenergy/detail.cfm?id=9791; 2015;[accessed May 2015], (n.d.). http://www.eia.gov/todayinenergy/detail.cfm?id=9791. [18] A. Hira, L.G. De Oliveira, No substitute for oil? How Brazil developed its ethanol industry, Energy Policy 37(2009) 2450-2456. [19] S. Matsuoka, J. Ferro, P. Arruda, The Brazilian experience of sugarcane ethanol industry, Biofuels, Springer 2011, pp. 157-172. [20] A.L.C.F. Gallardo, A. Bond, Capturing the implications of land use change in Brazil through environmental assessment:Time for a strategic approach? Environ. Impact Assess. Rev. 31(2011) 261-270. [21] IEA, CO2 Emissions from Fuel Combustion, International Energy Agency, 2012, https://doi.org/10.1787/co2_fuel-2012-en[June 2018]. [22] S.I. Mussatto, G. Dragone, P.M.R. Guimarães, J.P.A. Silva, L.M. Carneiro, I.C. Roberto, A. Vicente, L. Domingues, J.A. Teixeira, Technological trends, global market, and challenges of bio-ethanol production, Biotechnol. Adv. 28(2010) 817-830. [23] M. Balat, H. Balat, C. Öz, Progress in bioethanol processing, Prog. Energy Combust. Sci. 34(2008) 551-573. [24] A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O'hare, D.M. Kammen, Ethanol can contribute to energy and environmental goals, Science 311(2006) 506-508. [25] L. Luo, E. van der Voet, G. Huppes, An energy analysis of ethanol from cellulosic feedstock-Corn stover, Renew. Sust. Energ. Rev. 13(2009) 2003-2011. [26] OECD-FAO, Agricultural Outlook 2017-2027, 2018. [27] S. Haghighi Mood, A. Hossein Golfeshan, M. Tabatabaei, G. Salehi Jouzani, G.H. Najafi, M. Gholami, M. Ardjmand, Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment, Renew. Sustain. Energy Rev. 27(2013) 77-93. [28] C. Eliana, R. Jorge, P. Juan, R. Luis, Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass, Fuel. 118(2014) 41-47. [29] K.E. Kang, M. Han, S.K. Moon, H.W. Kang, Y. Kim, Y.L. Cha, G.W. Choi, Optimization of alkali-extrusion pretreatment with twin-screw for bioethanol production from Miscanthus, Fuel. 109(2013) 520-526. [30] S.C. Rabelo, R.R. Andrade, R. Maciel Filho, A.C. Costa, Alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis and fermentation of sugarcane bagasse to ethanol, Fuel. 136(2014) 349-357. [31] L. Mesa, N. López, C. Cara, E. Castro, E. González, S.I. Mussatto, Techno-economic evaluation of strategies based on two steps organosolv pretreatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production, Renew. Energy. 86(2016) 270-279. [32] C.S. Goh, K.T. Lee, A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development, Renew. Sust. Energ. Rev. 14(2010) 842-848. [33] M.G. Borines, R.L. de Leon, J.L. Cuello, Bioethanol production from the macroalgae Sargassum spp, Bioresour. Technol. 138(2013) 22-29. [34] A.T. Critchley, M. Ohno, Seaweed Resources of the World, Kanagawa International Fisheries Training Centre, Japan International Cooperation Agency, 1998. [35] FAO, Fishery and Aquaculture Statistics, Available from http://www.fao.org/fishery/static/Yearbook/YB2016_USBcard/navigation/index_content_aquaculture_e.htm 2018. [36] M.R. Brown, The amino-acid and sugar composition of 16 species of microalgae used in mariculture, J. Exp. Mar. Bio. Ecol. 145(1991) 79-99. [37] M.A. Hejazi, R.H. Wijffels, Milking of microalgae, Trends Biotechnol. 22(2004) 189-194. [38] C. Ratledge, Fatty acid biosynthesis in microorganisms being used for single cell oil production, Biochimie. 86(2004) 807-815. [39] O. Pulz, W. Gross, Valuable products from biotechnology of microalgae, Appl. Microbiol. Biotechnol. 65(2004) 635-648. [40] FAO, Crop Production, http://faostat3.fao.org/. Retrieved on March 23, 2019, (2018). [41] R. Lemus, E.C. Brummer, K.J. Moore, N.E. Molstad, C.L. Burras, M.F. Barker, Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA, Biomass Bioenergy 23(2002) 433-442. [42] K.J. Shinners, B.N. Binversie, Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt, Biomass Bioenergy 31(2007) 576-584. [43] J. Trivedi, M. Aila, D.P. Bangwal, S. Kaul, M.O. Garg, Algae based biorefinery-How to make sense? Renew. Sust. Energ. Rev. 47(2015) 295-307. [44] F.M. Kerton, Y. Liu, K.W. Omari, K. Hawboldt, Green chemistry and the ocean-based biorefinery, Green Chem. 15(2013) 860-871. [45] L. Lin, M. Tako, F. Hongo, Isolation and characterization of iota-carrageenan from Eucheuma serra (Togekirinsai), J. Appl. Glycosci. 47(2000) 303-310. [46] C.L. Hurd, P.J. Harrison, K. Bischof, C.S. Lobban, Seaweed Ecology and Physiology, Cambridge University Press, 2014. [47] K. Gao, K.R. McKinley, Use of macroalgae for marine biomass production and CO2 remediation:A review, J. Appl. Phycol. 6(1994) 45-60. [48] C.S. Lobban, M.J. Wynne, The Biology of Seaweeds, Univ of California Press, 1981. [49] R.P. John, G.S. Anisha, Macroalgae and their potential for biofuel, Plant Sci. Rev. 2012(2011) 151. [50] A.S. Boonstra, The Macroalgae-based Biorefinery-A Comprehensive Review and a Prospective Study of Future Macroalgae-based Biorefinery Systems, 2015. [51] M. Song, H. Pham, J. Seon, H. Woo, Overview of anaerobic digestion process for biofuels production from marine macroalgae:A developmental perspective on brown algae, Korean J. Chem. Eng. (2015) 1-9. [52] K.A. Jung, S.-R. Lim, Y. Kim, J.M. Park, Potentials of macroalgae as feedstocks for biorefinery, Bioresour. Technol. 135(2013) 182-190. [53] T. Burton, H. Lyons, Y. Lerat, M. Stanley, M.B. Rasmussen, A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland, Sustainable Energy Ireland-SEI, Dublin, 2009. [54] G.P.B. Marquez, W.J.E. Santiañez, G.C. Trono Jr., M.N.E. Montaño, H. Araki, H. Takeuchi, T. Hasegawa, Seaweed biomass of the Philippines:Sustainable feedstock for biogas production, Renew. Sustain. Energy Rev. 38(2014) 1056-1068. [55] S. Kraan, Algal Polysaccharides, Novel Applications and Outlook, INTECH Open Access Publisher, 2012. [56] E.J. Yun, H.T. Kim, K.M. Cho, S. Yu, S. Kim, I.-G. Choi, K.H. Kim, Pretreatment and saccharification of red macroalgae to produce fermentable sugars, Bioresour. Technol. 199(2016) 311-318. [57] S.H. Ho, X. Ye, T. Hasunuma, J.-S. Chang, A. Kondo, Perspectives on engineering strategies for improving biofuel production from microalgae-A critical review, Biotechnol. Adv. 32(2014) 1448-1459. [58] S.J.A. van Kuijk, A.S.M. Sonnenberg, J.J.P. Baars, W.H. Hendriks, J.W. Cone, Fungal treated lignocellulosic biomass as ruminant feed ingredient:A review, Biotechnol. Adv. 33(2015) 191-202. [59] L. Paulova, P. Patakova, B. Branska, M. Rychtera, K. Melzoch, Lignocellulosic ethanol:Technology design and its impact on process efficiency, Biotechnol. Adv. 33(2015) 1091-1107. [60] A. Takagaki, C. Tagusagawa, K. Domen, Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst, Chem. Commun. (2008) 5363-5365. [61] R. Rinaldi, R. Palkovits, F. Schüth, Depolymerization of cellulose using solid catalysts in ionic liquids, Angew. Chemie Int. Ed. 47(2008) 8047-8050. [62] J.A. Bootsma, B.H. Shanks, Cellobiose hydrolysis using organic-inorganic hybrid mesoporous silica catalysts, Appl. Catal. A Gen. 327(2007) 44-51. [63] G. Roesijadi, S.B. Jones, L.J. Snowden-Swan, Y. Zhu, Macroalgae as a Biomass Feedstock:A Preliminary Analysis, PNNL 19944, Pacific Northwest Natl. Lab, Richland, WA, 2010. [64] S. Wegeberg, C. Felby, Algae Biomass for Bioenergy in Denmark, Biol. Challenges Oppor. Copenhagen Univ, Copenhagen, 2010. [65] M. Meinita, Y.K. Hong, G.T. Jeong, Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii), Bioprocess Biosyst. Eng. 35(2012) 93-98. [66] B.J. Gosch, M. Magnusson, N.A. Paul, R. Nys, Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts, GCB Bioenergy 4(2012) 919-930. [67] E.W. Becker, Microalgae:Biotechnology and Microbiology, Cambridge University Press, 1994. [68] A.B. Ross, J.M. Jones, M.L. Kubacki, T. Bridgeman, Classification of macroalgae as fuel and its thermochemical behaviour, Bioresour. Technol. 99(2008) 6494-6504. [69] S.M. Renaud, J.T. Luong-Van, Seasonal Variation in the Chemical Composition of Tropical Australian Marine Macroalgae, in:Eighteenth Int, Springer, Seaweed Symp, 2007155-161. [70] A. Jensen, Present and Future Needs for Algae and Algal Products, in:Fourteenth Int, Springer, Seaweed Symp, 199315-23. [71] B.A. Yoza, E.M. Masutani, The analysis of macroalgae biomass found around Hawaii for bioethanol production, Environ. Technol. 34(2013) 1859-1867. [72] L.M.L. Laurens, T.A. Dempster, H.D.T. Jones, E.J. Wolfrum, S. Van Wychen, J.S.P. McAllister, M. Rencenberger, K.J. Parchert, L.M. Gloe, Algal biomass constituent analysis:method uncertainties and investigation of the underlying measuring chemistries, Anal. Chem. 84(2012) 1879-1887. [73] E.J. Yun, I.-G. Choi, K.H. Kim, Red Macroalgae as a Sustainable Resource for BioBased Products, Trends Biotechnol, 2015. [74] N. Trivedi, V. Gupta, C.R.K. Reddy, B. Jha, Enzymatic hydrolysis and production of bioethanol from common macrophytic green alga Ulva fasciata Delile, Bioresour. Technol. 150(2013) 106-112. [75] R.E. Cian, S.R. Drago, F.S. de Medina, O. Martínez-Augustin, Proteins and carbohydrates from red seaweeds:evidence for beneficial effects on gut function and microbiota, Mar. Drugs. 13(2015) 5358-5383. [76] J.J. Yoon, Y.J. Kim, S.H. Kim, H.J. Ryu, J.Y. Choi, G.S. Kim, M.K. Shin, Production of polysaccharides and corresponding sugars from red seaweed, Adv. Mater. Res., Trans Tech Publ (2010) 463-466. [77] N.-J. Kim, H. Li, K. Jung, H.N. Chang, P.C. Lee, Ethanol production from marine algal hydrolysates using Escherichia coli KO11, Bioresour. Technol. 102(2011) 7466-7469. [78] Y.S. Sung-Soo, Jang Motoharu Uchida, Minato Wakisaka, Production of mono sugar from acid hydrolysis of seaweed, African J. Biotechnol. 11(2012) 1953-1963. [79] J.-H. Park, J.-Y. Hong, H.C. Jang, S.G. Oh, S.-H. Kim, J.-J. Yoon, Y.J. Kim, Use of Gelidium amansii as a promising resource for bioethanol:A practical approach for continuous dilute-acid hydrolysis and fermentation, Bioresour. Technol. 108(2011) 83-88. [80] H.T. Kim, E.J. Yun, D. Wang, J.H. Chung, I.-G. Choi, K.H. Kim, High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass, Bioresour. Technol. 136(2013) 582-587. [81] N. Wei, J. Quarterman, Y.-S. Jin, Marine macroalgae:an untapped resource for producing fuels and chemicals, Trends Biotechnol. 31(2013) 70-77. [82] V.L. Campo, D.F. Kawano, D.B. da Silva, I. Carvalho, Carrageenans:biological properties, chemical modifications and structural analysis-a review, Carbohydr. Polym. 77(2009) 167-180. [83] S. Mutripah, M.D.N. Meinita, J.-Y. Kang, G.-T. Jeong, A.B. Susanto, R.E. Prabowo, Y.-K. Hong, Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer's yeast, J. Appl. Phycol. 26(2014) 687-693. [84] H. Chen, D. Zhou, G. Luo, S. Zhang, J. Chen, Macroalgae for biofuels production:Progress and perspectives, Renew. Sustain. Energy Rev. 47(2015) 427-437. [85] J. Adams, J. Gallagher, I. Donnison, Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments, J. Appl. Phycol. 21(2009) 569-574. [86] S.M. Cardoso, L.G. Carvalho, P.J. Silva, M.S. Rodrigues, O.R. Pereira, L. Pereira, Bioproducts from seaweeds:a review with special focus on the Iberian Peninsula, Curr. Org. Chem. 18(2014) 896-917. [87] C. Scullin, V. Stavila, A. Skarstad, J.D. Keasling, B.A. Simmons, S. Singh, Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima, Bioresour. Technol. 184(2015) 415-420. [88] M. Enquist-Newman, A.M.E. Faust, D.D. Bravo, C.N.S. Santos, R.M. Raisner, A. Hanel, P. Sarvabhowman, C. Le, D.D. Regitsky, S.R. Cooper, L. Peereboom, A. Clark, Y. Martinez, J. Goldsmith, M.Y. Cho, P.D. Donohoue, L. Luo, B. Lamberson, P. Tamrakar, E.J. Kim, J.L. Villari, A. Gill, S.A. Tripathi, P. Karamchedu, C.J. Paredes, V. Rajgarhia, H.K. Kotlar, R.B. Bailey, D.J. Miller, N.L. Ohler, C. Swimmer, Y. Yoshikuni, Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform, Nature. 505(2014) 239-243. [89] G. Michel, T. Tonon, D. Scornet, J.M. Cock, B. Kloareg, The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in Eukaryotes, New Phytol. 188(2010) 82-97. [90] K. Bucholc, M. Szymczak-Żyła, L. Lubecki, A. Zamojska, P. Hapter, E. Tjernström, G. Kowalewska, Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production, Sci. Total Environ. 473-474(2014) 298-307. [91] A. Robic, C. Rondeau-Mouro, J.-F. Sassi, Y. Lerat, M. Lahaye, Structure and interactions of ulvan in the cell wall of the marine green algae Ulva rotundata (Ulvales, Chlorophyceae), Carbohydr. Polym. 77(2009) 206-216. [92] H.-W. Heldt, F. Heldt, Plant Biochemistry and Molecular Biology, 1997. [93] C. Hoek, Algae:An Introduction to Phycology, Cambridge university press, 1995. [94] M. Lahaye, A. Robic, Structure and functional properties of ulvan, a polysaccharide from green seaweeds, Biomacromolecules. 8(2007) 1765-1774. [95] M. Yanagisawa, S. Kawai, K. Murata, Strategies for the production of high concentrations of bioethanol from seaweeds:Production of high concentrations of bioethanol from seaweeds, Bioengineered. 4(2013) 224-235. [96] M. Lahaye, M. Brunel, E. Bonnin, Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp.(Ulvales, Chlorophyta), Carbohydr. Res. 304(1997) 325-333. [97] M. Lahaye, B. Ray, Cell-wall polysaccharides from the marine green alga Ulva "rigida"(Ulvales, Chlorophyta)-NMR analysis of ulvan oligosaccharides, Carbohydr. Res. 283(1996) 161-173. [98] P.I. Hargreaves, C.A. Barcelos, A.C.A. da Costa, N. Pereira Jr., Production of ethanol 3G from Kappaphycus alvarezii:Evaluation of different process strategies, Bioresour. Technol. 134(2013) 257-263. [99] F. Abd-Rahim, H. Wasoh, M.R. Zakaria, A. Ariff, R. Kapri, N. Ramli, L. Siew-Ling, Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis, Food Hydrocoll. 42(Part 2) (2014) 309-315. [100] S. Lee, Y. Oh, D. Kim, D. Kwon, C. Lee, J. Lee, Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains, Appl. Biochem. Biotechnol. 164(2011) 878-888. [101] M. Meinita, J.-Y. Kang, G.-T. Jeong, H. Koo, S. Park, Y.-K. Hong, Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii), J. Appl. Phycol. 24(2012) 857-862. [102] M. Meinita, Y.-K. Hong, G.-T. Jeong, Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii), Bioprocess Biosyst. Eng. 35(2012) 123-128. [103] Y. Khambhaty, K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, P.K. Ghosh, Kappaphycus alvarezii as a source of bioethanol, Bioresour. Technol. 103(2012) 180-185. [104] Y.Y. Teh, K.T. Lee, W.-H. Chen, S.-C. Lin, H.-K. Sheen, I.S. Tan, Dilute sulfuric acid hydrolysis of red macroalgae Eucheuma denticulatum with microwave-assisted heating for biochar production and sugar recovery, Bioresour. Technol. 246(2017) 20-27. [105] Y.-B. Huang, Y. Fu, Hydrolysis of cellulose to glucose by solid acid catalysts, Green Chem. 15(2013) 1095-1111. [106] M.J. Taherzadeh, K. Karimi, Enzymatic-based hydrolysis processes for ethanol, Bioresources. 2(2007) 707-738. [107] D. Choi, H.S. Sim, Y.L. Piao, W. Ying, H. Cho, Sugar production from raw seaweed using the enzyme method, J. Ind. Eng. Chem. 15(2009) 12-15. [108] L. Ge, P. Wang, H. Mou, Study on saccharification techniques of seaweed wastes for the transformation of ethanol, Renew. Energy 36(2011) 84-89. [109] M. Yanagisawa, K. Nakamura, O. Ariga, K. Nakasaki, Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides, Process Biochem. 46(2011) 2111-2116. [110] F. Talebnia, D. Karakashev, I. Angelidaki, Production of bioethanol from wheat straw:an overview on pretreatment, hydrolysis and fermentation, Bioresour. Technol. 101(2010) 4744-4753. [111] S. Kumar, R. Gupta, G. Kumar, D. Sahoo, R.C. Kuhad, Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach, Bioresour. Technol. 135(2013) 150-156. [112] R. Harun, J.W.S. Yip, S. Thiruvenkadam, W.A.W.A.K. Ghani, T. Cherrington, M.K. Danquah, Algal biomass conversion to bioethanol-A step-by-step assessment, Biotechnol. J. 9(2014) 73-86. [113] J.M.M. Adams, T.A. Toop, I.S. Donnison, J.A. Gallagher, Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels, Bioresour. Technol. 102(2011) 9976-9984. [114] N. Schultz-Jensen, A. Thygesen, F. Leipold, S.T. Thomsen, C. Roslander, H. Lilholt, A.B. Bjerre, Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol-Comparison of five pretreatment technologies, Bioresour. Technol. 140(2013) 36-42. [115] S. Monavari, M. Galbe, G. Zacchi, The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis, Biotechnol. Biofuels. 2(2009) 6. [116] A. Cabiac, E. Guillon, F. Chambon, C. Pinel, F. Rataboul, N. Essayem, Cellulose reactivity and glycosidic bond cleavage in aqueous phase by catalytic and non catalytic transformations, Appl. Catal. A Gen. 402(2011) 1-10. [117] P. Alvira, E. Tomás-Pejó, M. Ballesteros, M.J. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review, Bioresour. Technol. 101(2010) 4851-4861. [118] T.N. Ang, G.C. Ngoh, A.S.M. Chua, Comparative study of various pretreatment reagents on rice husk and structural changes assessment of the optimized pretreated rice husk, Bioresour. Technol. 135(2013) 116-119. [119] J.Y. Lee, Y.S. Kim, B.H. Um, K. Oh, Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration, Renew. Energy. 54(2013) 196-200. [120] J.Y. Lee, Y.S. Kim, Optimization the process variables for the fractionation of Saccharina japonica to enhance glucan content, J. Ind. Eng. Chem. 19(2013) 938-943. [121] L. Tabil, M. Kashaninejad, P. Adapa, Biomass Feedstock Pre-processing-Part 1:PreTreatment, INTECH Open Access Publisher, 2011. [123] S. Tojo, T. Hirasawa, Research Approaches to Sustainable Biomass Systems, Academic Press, 2013. [124] G. Busca, Acid catalysts in industrial hydrocarbon chemistry, Chem. Rev. 107(2007) 5366-5410. [125] F. Guo, Z. Fang, C.C. Xu, R.L. Smith Jr., Solid acid mediated hydrolysis of biomass for producing biofuels, Prog. Energy Combust. Sci. 38(5) (2012) 672-690. [126] K. Vigier, F. Jérôme, Heterogeneously-catalyzed conversion of carbohydrates, in:A.P. Rauter, P. Vogel, Y. Queneau (Eds.), Carbohydrates Sustain. Dev. II, Springer Berlin/Heidelberg, 2010:pp. 63-92. [127] S. Shen, C. Wang, B. Cai, H. Li, Y. Han, T. Wang, H. Qin, Heterogeneous hydrolysis of cellulose into glucose over phenolic residue-derived solid acid, Fuel. 113(2013) 644-649. [128] D. Yamaguchi, M. Hara, Starch saccharification by carbon-based solid acid catalyst, Solid State Sci. 12(2010) 1018-1023. [129] M. Marzo, A. Gervasini, P. Carniti, Hydrolysis of disaccharides over solid acid catalysts under green conditions, Carbohydr. Res. 347(2012) 23-31. [130] R. Ormsby, J.R. Kastner, J. Miller, Hemicellulose hydrolysis using solid acid catalysts generated from biochar, Catal. Today. 190(2012) 89-97. [131] X. Zhang, H. Lu, K. Wu, Y. Liu, C. Liu, Y. Zhu, B. Liang, Hydrolysis of mechanically pre-treated cellulose catalyzed by solid acid SO42-TiO2 in water-ethanol solvent, Chin J. Chem. Eng. 28(1) (2020) 136-142. [132] N.-O. Nilvebrant, A. Reimann, S. Larsson, L. Jönsson, Detoxification of lignocellulose hydrolysates with ion-exchange resins, Appl. Biochem. Biotechnol. 91-93(2001) 35-49. [133] M.A. Harmer, W.E. Farneth, Q. Sun, High surface area Nafion resin/silica nanocomposites:a new class of solid acid catalyst, J. Am. Chem. Soc. 118(1996) 7708-7715. [134] G.-T. Jeong, S.-K. Kim, D.-H. Park, Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars, Bioresour. Technol. 181(2015) 1-6. [135] I.S. Tan, M.K. Lam, K.T. Lee, Hydrolysis of macroalgae using heterogeneous catalyst for bioethanol production, Carbohydr. Polym. 94(2013) 561-566. [136] I.S. Tan, K.T. Lee, Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol, Carbohydr. Polym. 124(2015) 311-321. [137] I.S. Tan, K.T. Lee, Comparison of different process strategies for bioethanol production from Eucheuma cottonii:An economic study, Bioresour. Technol. 199(2016) 336-346. [138] G. Feng, Z. Fang, Solid- and nano-catalysts pretreatment and hydrolysis techniques, in:Z. Fang (Ed.), Pretreat. Tech. Biofuels Biorefineries, Springer Berlin, Heidelberg 2013, pp. 339-366. [139] H.-X. Li, X. Zhang, Q. Wang, K. Zhang, Q. Cao, L. Jin, Preparation of the recycled and regenerated mesocarbon microbeads-based solid acid and its catalytic behaviors for hydrolysis of cellulose, Bioresour. Technol. 270(2018) 166-171. [140] L.I. Sen, W. Eika, Direct saccharification of rice straw using a solid acid catalyst, J. Jpn. Inst. Energy. 90(11) (2011) 1065-1071. [141] M. Daroch, S. Geng, G. Wang, Recent advances in liquid biofuel production from algal feedstocks, Appl. Energy. 102(2013) 1371-1381. [142] O.K. Lee, A.L. Kim, D.H. Seong, C.G. Lee, Y.T. Jung, J.W. Lee, E.Y. Lee, Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta, Bioresour. Technol. 132(2013) 197-201. [143] F.C. Wu, J.Y. Wu, Y.J. Liao, M.Y. Wang, I.L. Shih, Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass, Bioresour. Technol. 156(2014) 123-131. [144] K.P. Candra, Study on bioethanol production using red seaweed Eucheuma cottonii from Bontang sea water, J. Coast. Dev. 15(2012) 45-50. [145] Z. Kádár, Z. Szengyel, K. Réczey, Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol, Ind. Crops Prod. 20(2004) 103-110. [146] S. Srichuwong, M. Fujiwara, X. Wang, T. Seyama, R. Shiroma, M. Arakane, N. Mukojima, K. Tokuyasu, Simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash for the production of ethanol, Biomass and Bioenergy. 33(2009) 890-898. [147] M.A. das Neves, T. Kimura, N. Shimizu, M. Nakajima, State of the art and future trends of bioethanol production, Dyn. Biochem. Process Biotechnol. Mol. Biol. 1(2007) 1-14. [148] H.M. Kim, S.G. Wi, S. Jung, Y. Song, H.-J. Bae, Efficient approach for bioethanol production from red seaweed Gelidium amansii, Bioresour. Technol. 175(2015) 128-134. [149] J. Ye Lee, P. Li, J. Lee, H.J. Ryu, K.K. Oh, Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation, Bioresour. Technol. 127(2013) 119-125. [150] J. Lian, R. Chao, H. Zhao, Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol, Metab. Eng. 23(2014) 92-99. [151] P. Vinuselvi, S.K. Lee, Rewiring carbon catabolite repression for microbial cell factory, Biochem. Mol. Biol. Reports. 45(2012) 59-70. [152] J.H. Park, S.H. Kim, H.D. Park, J.S. Kim, J.-J. Yoon, Simultaneous utilization of galactose and glucose by Saccharomyces cerevisiae mutant strain for ethanol production, Renew. Energy. 65(2014) 213-218. [153] C.R. Carere, R. Sparling, N. Cicek, D.B. Levin, Third generation biofuels via direct cellulose fermentation, Int. J. Mol. Sci. 9(2008) 1342-1360. [154] C.A. Cardona, O.J. Sanchez, L.F. Gutierrez, Process Synthesis for Fuel Ethanol Production, CRC Press, 2009. [156] A.J. Wargacki, E. Leonard, M.N. Win, D.D. Regitsky, C.N.S. Santos, P.B. Kim, S.R. Cooper, R.M. Raisner, A. Herman, A.B. Sivitz, An engineered microbial platform for direct biofuel production from brown macroalgae, Science 335(2012) 308-313. [157] N. Trivedi, C.R.K. Reddy, R. Radulovich, B. Jha, Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production, Algal Res. 9(2015) 48-54. [158] L. Wang, M. Sharifzadeh, R. Templer, R.J. Murphy, Bioethanol production from various waste papers:Economic feasibility and sensitivity analysis, Appl. Energy. 111(2013) 1172-1182. [159] C.F. Triana, J.A. Quintero, R.A. Agudelo, C.A. Cardona, J.C. Higuita, Analysis of coffee cut-stems (CCS) as raw material for fuel ethanol production, Energy. 36(2011) 4182-4190. [160] J. Zhang, Z. Fang, H. Deng, X. Zhang, J. Bao, Cost analysis of cassava cellulose utilization scenarios for ethanol production on flowsheet simulation platform, Bioresour. Technol. 134(2013) 298-306. [161] P. Tunå, C. Hulteberg, Woody biomass-based transportation fuels-A comparative techno-economic study, Fuel. 117(2014) 1020-1026. [162] A. Philippsen, P. Wild, A. Rowe, Energy input, carbon intensity and cost for ethanol produced from farmed seaweed, Renew. Sustain. Energy Rev. 38(2014) 609-623. [163] J.H. Reith, E.P. Deurwaarder, K. Hemmes, A. Curvers, P. Kamermans, W. Brandenburg, G. Zeeman, Bio-offshore; Largescale Cultivation of Sea Weeds Combined with Offshore Windmill Parks in the North Sea, Energy Res. Netherlands (ECN), Petten Wageningen Univ. Res. Centre, Wageningen, 2005. [164] M. Alvarado-Morales, A. Boldrin, D.B. Karakashev, S.L. Holdt, I. Angelidaki, T. Astrup, Life cycle assessment of biofuel production from brown seaweed in Nordic conditions, Bioresour. Technol. 129(2013) 92-99. [165] D. Aitken, C. Bulboa, A. Godoy-Faundez, J.L. Turrion-Gomez, B. Antizar-Ladislao, Life cycle assessment of macroalgae cultivation and processing for biofuel production, J. Clean. Prod. 75(2014) 45-56. [166] J. Langlois, J. Sassi, G. Jard, J. Steyer, J. Delgenes, A. Hélias, Life cycle assessment of biomethane from offshore-cultivated seaweed, Biofuels, Bioprod. Biorefining. 6(2012) 387-404. [167] M. Aresta, A. Dibenedetto, G. Barberio, Utilization of macro-algae for enhanced CO2 fixation and biofuels production:development of a computing software for an LCA study, Fuel Process. Technol. 86(2005) 1679-1693. [168] M. Seghetta, X. Hou, S. Bastianoni, A.-B. Bjerre, M. Thomsen, Life cycle assessment of macroalgal biorefinery for the production of ethanol, proteins and fertilizers-A step towards a regenerative bioeconomy, J. Clean. Prod. 137(2016) 1158-1169. |
[1] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[2] | Wei Yang, Yalun Ma, Xu Zhang, Fan Yang, Dong Zhang, Shengji Wu, Huanghu Peng, Zezhou Chen, Lei Che. Effect of acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust in subcritical water [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 195-204. |
[3] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[4] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[5] | Zhenfu Wang, Jie Gao, Qinghong Shi, Xiaoyan Dong, Yan Sun. Facile purification and immobilization of organophosphorus hydrolase on protein-inorganic hybrid phosphate nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 119-125. |
[6] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
[7] | Mustapha Omenesa Idris, Claudia Guerrero-Barajas, Hyun-Chul Kim, Asim Ali Yaqoob, Mohamad Nasir Mohamad Ibrahim. Scalability of biomass-derived graphene derivative materials as viable anode electrode for a commercialized microbial fuel cell: A systematic review [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 277-292. |
[8] | Shutong Pang, Hualiang An, Xinqiang Zhao, Yanji Wang. Influence of Ca/P ratio on the catalytic performance of hydroxyapatite for decarboxylation of itaconic acid to methacrylic acid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 402-408. |
[9] | Yue Wang, Luyao Huan, Haiyan Liang, Xuejia Ding, Jianguo Mi. Foaming biocompatible and biodegradable PBAT/PLGA as fallopian tube stent using supercritical carbon dioxide [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 245-253. |
[10] | Xing Zhang, Jingfeng Wu, Junhao Chen, Liang Lu, Lingjun Zhu, Shurong Wang. Production of aromatic hydrocarbons by co-cracking of bio-oil and ethanol over Ga2O3/HZSM-5 catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 126-133. |
[11] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[12] | Zheng Wang, Sijia Li, Shengping Wang, Jiaxu Liu, Yujun Zhao, Xinbin Ma. Coupling effect of bifunctional ZnCe@SBA-15 catalyst in 1,3-butadiene production from bioethanol [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 162-170. |
[13] | Yanan Wei, Yunlei Zhang, Bing Li, Wen Guan, Changhao Yan, Xin Li, Yongsheng Yan. Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 169-181. |
[14] | Xinyu Yan, Bobo Wang, Hongxia Liang, Jie Yang, Jie Zhao, Fabrice Ndayisenga, Hongxun Zhang, Zhisheng Yu, Zhi Qian. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 239-245. |
[15] | Xiaocui Sun, Xue Liu, Guang-Rong Zhao. Separation of salidroside from the fermentation broth of engineered Escherichia coli using macroporous adsorbent resins [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 260-267. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||