[1] Z. Khalkhali, B.E. Yekta, V.K. Marghussian, Mechanical and chemical properties of Zr and P-doped lithium disilicate glass ceramics in dental restorations, Int. J. Appl. Ceram. Technol. 9(2012) 497-506. [2] G.A. Appleby, C.M. Bartle, G.V.M. Williams, et al., Lithium borate glass ceramics as thermal neutron imaging plates, Curr. Appl. Phys. 6(2006) 389-392. [3] B. Scrosati, Power sources for portable electronics and hybrid cars:Lithium batteries and fuel cells, Chem. Rec. 5(2005) 286-297. [4] Y. Xie, C. Wu, Design of nanoarchitectured electrode materials applied in newgeneration rechargeable lithium ion batteries, Dalton Trans. 45(2007) 5235-5240. [5] W. Xiang, S. Liang, Z. Zhou, et al., Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium, Hydrometallurgy 166(2016) 9-15. [6] M. Zheng, X. Liu, Lithium resource of China, Advanced materials industry 8(2007) 13-16(In Chinese). [7] A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination 317(2013) 184-192. [8] M. Grágeda, A. González, M. Grágeda, et al., Purification of brines by chemical precipitation and ion-exchange processes for obtaining battery-grade lithium compounds, Int. J. Energy Res. 13(2018) 2386-2399. [9] T. Hoshino, Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane, Desalination 317(2013) 11-16. [10] L. Gong, W. Ouyang, Z. Li, et al., Direct numerical simulation of continuous lithium extraction from high Mg2+/Li+ ratio brines using microfluidic channels with ion concentration polarization, J. Membr. Sci. 556(2018) 34-41. [11] M. Chen, Wu R, Ju S, et al., Improved performance of Al-doped LiMn2O4, ion-sieves for Li+, adsorption, Microporous Mesoporous Mater. 261(2018) 29-34. [12] A. Pérez-González, R. Ibáñez, P. Gómez, et al., Nanofiltration separation of polyvalent and monovalent anions in desalination brines, J. Membr. Sci. 473(2015) 16-27. [13] X. Chen, M. Qiu, H. Ding, et al., Reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification, Nanoscale 10(2016) 5696-5705. [14] Xu P, W. Wang, X. Qian, et al., Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio, Desalination 449(2019) 57-68. [15] G. Yang, H. Shi, W. Liu, et al., Investigation of Mg2+/Li+ separation by nanofiltration, Chin. J. Chem. Eng. 4(2011) 586-591. [16] Q. Bi, Z. Zhang, C. Zhao, Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration, Water Science & Technology 10(2014) 1690-1694. [17] C. Wu, S. Zhang, D. Yang, et al., Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane, J. Membr. Sci. 279(2006) 238-245. [18] X.Q. Cheng, Y. Liu, Z. Guo, et al., Nanofiltration membrane achieving dual resistance to fouling and chlorine for "green" separation of antibiotics, J. Membr. Sci. 493(2015) 156-166. [19] D. Menne, C. Üzüm, A Koppelmann, et al. regenerable polymer/ceramic hybrid nanofiltration membrane based on polyelectrolyte assembly by layer-by-layer technique, J. Membr. Sci. 520(2016) 924-932. [20] M. Kanezashi, K. Yada, T. Yoshioka, et al., Organic-inorganic hybrid silica membranes with controlled silica network size:Preparation and gas permeation characteristics, J. Membr. Sci. 348(2010) 310-318. [21] X. Rong, J. Wang, M. Kanezashi, et al., Development of robust organosilica membranes for reverse osmosis, Langmuir 27(2011) 13996-13999. [22] K. Oda, K. Akamatsu, T. Sugawara, et al., Dehydrogenation of methylcyclohexane to produce high-purity hydrogen using membrane reactors with amorphous silica membranes, Ind. Eng. Chem. Res. 49(2010) 11287-11293. [23] K. Maver, U.L. Tangar, P. Judeinstein, et al., Dynamic studies of Ormosil membranes, J. Non-Cryst. Solids 354(2008) 680-687. [24] H. Song, S. Zhao, J. Lei, et al., Pd-doped organosilica membrane with enhanced gas permeability and hydrothermal stability for gas separation[J], J. Mater. Sci. 51(2016) 6275-6286. [25] W. Puthai, M. Kanezashi, H. Nagasawa, et al., Effect of firing temperature on the water permeability of SiO2-ZrO2 membranes for nanofiltration, J. Membr. Sci. 497(2016) 348-356. [26] Yu S, T.K.S. Wong, H. Xiao, et al., The comparison of thermal and dielectric properties of silsesquioxane films cured in nitrogen and in air, Chem. Phys. Lett. 380(2003) 111-116. [27] H. Song, Y. Wei, C. Wang, et al., Tuning sol size to optimize organosilica membranes for gas separation, Chin. J. Chem. Eng. 26(2018) 53-59. [28] P.H.T. Ngamou, J.P. Overbeek, R. Kreiter, et al., Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges, J. Mater. Chem. A 18(2013) 55-67. [29] C. Visvanathan, P.K. Roy, Potential of nanofiltration for phosphate removal from wastewater, Environ. Technol. Lett. 18(1997) 551-556. [30] A. Seidel, J.J. Waypa, M. Elimelech, Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane, Environ. Eng. Sci. 18(2001) 105-113. [31] X. Yang, L. Yan, F. Ran, et al., Interface-confined surface engineering constructing water-unidirectional Janus membrane, J. Membr. Sci. 576(2019) 9-16. [32] H. Suna, Y. Zhanga, H. Sadama, et al., Novel mussel-inspired zwitterionic hydrophilic polymer to boost membrane water-treatment performance, J. Membr. Sci. 582(2019) 1-9. [33] Y. Zhang, H. Sun, H. Sadam, et al., Supramolecular chemistry assisted construction of ultra-stable solvent-resistant membranes for angstrom-sized molecular separation, Chem. Eng. J. 371(2019) 535-543. [34] A.G. Volkov, S. Paula, D.W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochemistry, Bioenergetics 42(1997) 153-160. [35] J. Schaep, B.V.D. Bruggen, C. Vandecasteele, et al., Influence of ion size and charge in nanofiltration, Sep. Purif. Technol. 14(1998) 155-162. [36] C. Wei, Z. He, L. Lin, et al., Negatively charged polyimide nanofiltration membranes with high selectivity and performance stability by optimization of synergistic imidization, J. Membr. Sci. 563(2018) 752-761. [37] Tu K, L. Nghiem, A. Chivas, et al., Boron removal by reverse osmosis membranes in seawater desalination applications. Separation & Purification, Technology 75(2010) 87-101. [38] Y. Zhang, L. Zhang, L. Hou, et al., Modeling of the variations of permeate flux, concentration polarization, solute rejection inside nanofiltration system, AIChE J. 65(2019) 1076-1087. [39] X. Li, C. Zhang, S. Zhang, et al., Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation, Desalination 369(2015) 26-36. [40] Q. Bi, Z. Zhang, C. Zhao, et al., Study on the recovery of lithium from high Mg2+/Li+ ratio brine by nanofiltration, Water Science & Technology 70(2014) 1690-1694. [41] W. Li, C. Shi, A. Zhou, et al., A positively charged composite nanofiltration membrane modified by EDTA for LiCl/MgCl2 separation, Sep. Purif. Technol. 186(2017) 233-242. [42] K.Y. Wang, Y. Xiao, T.S. Chung, Chemically modified polybenzimidazole nanofiltration membrane for the separation of electrolytes and cephalexin, Chem. Eng. Sci. 61(2006) 5807-5817. [43] A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination 317(2013) 184-192. [44] X. Li, C. Zhang, S. Zhang, et al., Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation, Desalination 369(2015) 26-36. [45] C. Wu, S. Zhang, D. Yang, et al., Preparation, characterization and application in wastewater treatment of a novel thermal stable composite membrane, J. Membr. Sci. 279(2006) 238-245. |