[1] E.D. Sloan, C.A. Koh, Overview and historical perspective, Clathrate Hydrates of Natural Gases, Third editionCRC Press 2007, pp. 1-44. [2] L. Yang, Y. Liu, H. Zhang, B. Xiao, X. Guo, R. Wei, L. Xu, L. Sun, B. Yu, S. Leng, Y. Li, The status of exploitation techniques of natural gas hydrate, Chin. J. Chem. Eng. 27(9) (2019) 2133-2147. [3] Z. Wu, Y. Li, X. Sun, P. Wu, J. Zheng, Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments, Appl Energ 230(2018) 1304-1310. [4] A. Demirbas, Methane hydrates as potential energy resource:Part 1-Importance, resource and recovery facilities, Energy Convers. Manag. 51(2010) 1547-1561. [5] Z. Wu, Y. Li, X. Sun, M. Li, R. Jia, Experimental study on the gas phase permeability of montmorillonite sediments in the presence of hydrates, Mar Petrol Geol 91(2018) 373-380. [6] L.G. Tang, X.S. Li, Z.P. Feng, G. Li, S.S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energ Fuel 21(2007) 227-233. [7] T.A. Strobel, K.C. Hester, C.A. Koh, A.K. Sum, E.D. Sloan, Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage, Chem. Phys. Lett. 478(2009) 97-109. [8] H. Davy, The Bakerian lecture:on some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, To Inflammable Bodies, Philosophical Transactions of the Royal Society 101(1800) 1-35. [9] E.G. Hammerschmidt, Formation of gas hydrates in natural gas transmission lines, Industrial & Engineering Chemistry 26(1934) 851-855. [10] Y.F. Makogon, S.A. Holditch, T.Y. Makogon, Natural gas-hydrates-A potential energy source for the 21st century, J. Pet. Sci. Eng. 56(2007) 14-31. [11] Y. Li, W. Liu, Y. Zhu, Y. Chen, Y. Song, Q. Li, Mechanical behaviors of permafrostassociated methane hydrate-bearing sediments under different mining methods, Appl Energ 162(2016) 1627-1632. [12] R. Boswell, Is gas hydrate energy within reach? Science (80-) 325(2009) 957-958. [13] C.K. Paull, W.J. Buelow, W. Ussler, W.S. Borowski, Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments, Geology 24(1996) 143-146. [14] M. Hyodo, Y. Li, J. Yoneda, Y. Nakata, N. Yoshimoto, A. Nishimura, Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments, Mar Petrol Geol 51(2014) 52-62. [15] J. Yuan, Y. Hou, M. Xu, China's 2020 carbon intensity target:Consistency, implementations, and policy implications, Renew. Sust. Energ. Rev. 16(2012) 4970-4981. [16] J. Gudmundsson, Frozen hydrate for transport of natural gas, Proceedings of the 2nd International Conference of Natural Gas Hydrates, Toulouse, France, 19961996, pp. 415-422. [17] J. Gudmundsson, F. Hveding, A. Børrehaug, Transport or Natural Gas as Frozen Hydrate, in:The Fifth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers 1995. [18] J. Gudmundsson, V. Andersson, O. Levik, M. Parlaktuna, Hydrate Concept for Capturing Associated Gas, in:European Petroleum Conference, Society of Petroleum Engineers 1998. [19] A.D. Khawaji, I.K. Kutubkhanah, J.-M. Wie, Advances in seawater desalination technologies, Desalination 221(2008) 47-69. [20] J. Zhao, X. Guo, M. Sun, Y. Zhao, L. Yang, Y. Song, N2O hydrate formation in porous media:A potential method to mitigate N2O emissions, Chem. Eng. J. 361(2019) 12-20. [21] L. Yang, L. Ai, K. Xue, Z. Ling, Y. Li, Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation, Energy 163(2018) 27-37. [22] S.-Y. Lee, G.D. Holder, Methane hydrates potential as a future energy source, Fuel Process. Technol. 71(2001) 181-186. [23] N. Goel, M. Wiggins, S. Shah, Analytical modeling of gas recovery from in situ hydrates dissociation, J. Pet. Sci. Eng. 29(2001) 115-127. [24] G. Ahmadi, C. Ji, D.H. Smith, Production of natural gas from methane hydrate by a constant downhole pressure well, Energy Convers. Manag. 48(2007) 2053-2068. [25] A. Demirbas, Methane hydrates as potential energy resource:Part 2-Methane production processes from gas hydrates, Energy Convers. Manag. 51(2010) 1562-1571. [26] Y. Wang, X. Li, G. Li, Y. Zhang, B. Li, J. Feng, A three-dimensional study on methane hydrate decomposition with different methods using five-spot well, Appl. Energy 112(2013) 83-92. [27] E. Sloan, C. Koh, Estimation techniques for phase Equilibria of natural gas hydrates, Clathrate Hydrates of Natural Gases (2008) 320-523. [28] D. Kashchiev, A. Firoozabadi, Induction time in crystallization of gas hydrates, J. Cryst. Growth 250(2003) 499-515. [29] V. Yakushev, V. Istomin, Gas-hydrates self-preservation effect, Physics and Chemistry of Ice (1992) 136-139. [30] P. Atkins, J. De Paula, Elements of Physical Chemistry, Oxford University Press, USA, 2013. [31] J. Lubaś, B. Darłak, Metastability of natural gas hydrates in the presence of N2 and H2S, Journal of Energy Resources Technology 126(2004) 125-132. [32] V. Skripov, Metastable Liquids, Wiley, New York, 1974. [33] G. Gu, G.R. Dickens, G. Bhatnagar, F.S. Colwell, G.J. Hirasaki, W.G.J.N.G. Chapman, Abundant Early Palaeogene marine gas hydrates despite warm deep-ocean temperatures, Nat. Geosci. 4(2011) 848. [34] B.A. Buffett, O.Y. Zatsepina, Metastability of gas hydrate, Geophys. Res. Lett. 26(1999) 2981-2984. [35] Y. Li, P. Wu, W. Liu, X. Sun, Z. Cui, Y. Song, A microfocus x-ray computed tomography based gas hydrate triaxial testing apparatus, Rev Sci Instrum 90(2019), 055106. [36] V.P. Melnikov, L.S. Podenko, A.O. Drachuk, N.S. Molokitin, A.M. Reshetnikov, Dissociation of gas hydrates produced from methane and "dry water" at temperatures below 273 K, Dokl. Phys. Chem. 461(2015) 4945. [37] Y. Nakajima, T. Takaoki, K. Ohgaki, S. Ota, Use of hydrate pellets for transportation of natural gas-Ⅱ-proposition of natural gas transportation in form of hydrate pellets, Proc. 4th Int. Conf. Gas Hydrates 2002, pp. 987-990. [38] M. Yang, Z. Fu, Y. Zhao, L. Jiang, J. Zhao, Y. Song, Effect of depressurization pressure on methane recovery from hydrate-gas-water bearing sediments, Fuel 166(2016) 419-426. [39] V. Yakushev, V. Istomin, The origin of gas blowouts from permafrost in Yamburg gas/condensate field, problems of gas fields development in permafrost conditions, The Digest/VNⅡGAZ (1987) 119-127. [40] Y.P. Handa, A calorimetric study of naturally occurring gas hydrates, Ind. Eng. Chem. Res. 27(1988) 872-874. [41] V. Yakushev, Gas-Hydrates Self-preservation Effect, Physics and Chemistry of Ice Hokkaido University Press, 1992. [42] J. Gudmundsson, M. Parlaktuna, Gas-in-ice:Concept evaluation, Technical Report, University of Trondheim, The Norwegian Institute of Technology, Department of Petroleum Engineering and Applied Geophysics (1991). [43] E. Ershov, V. Yakushev, Experimental research on gas hydrate decomposition in frozen rocks, Cold Reg. Sci. Technol. 20(1992) 147-156. [44] V. Melnikov, A. Nesterov, A. Reshetnikov, Gas hydrates dissociation at barometric pressure, Gazoviye Gidraty (Gas hydrates), 200555-61. [45] V. Istomin, V. Kwon, V. Yakushev, Engineering Computations of Gas Hydrates Formation Conditions, The manual, Moscow, VNⅡGAZ, 1989. [46] L.A. Stern, S. Circone, S.H. Kirby, W.B. Durham, Anomalous preservation of pure methane hydrate at 1 atm, J. Phys. Chem. B 105(2001) 1756-1762. [47] L.A. Stern, S.H. Kirby, W.B. Durham, S. Circone, W.F. Waite, Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior, Natural Gas Hydrate, Springer 2000, pp. 323-348. [48] W. Kuhs, G. Genov, D. Staykova, T. Hansen, Ice perfection and onset of anomalous preservation of gas hydrates, Phys. Chem. Chem. Phys. 6(2004) 4917-4920. [49] W. Kuhs, G. Genov, D. Staykova, T. Hansen, Ice Perfection and Anomalous Preservation of Gas Hydrates, in:Proceedings of the 5th International Conference on Gas Hydrates, Trondheim, Norway, 2005. [50] V. Istomin, V. Kvon, S. Dolgaev, Metastability in Gas Hydrates Formation and Decomposition, in:Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, United Kingdom, 2011. [51] V.P. Melnikov, A.N. Nesterov, L.S. Podenko, A.M. Reshetnikov, V.V. Shalamov, NMR evidence of supercooled water formation during gas hydrate dissociation below the melting point of ice, Chem. Eng. Sci. 71(2012) 573-577. [52] V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, Formation of supercooled water upon dissociation of propane hydrates at T b 270 K, Dokl. Phys. Chem. 417(2007) 304-307. [53] V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, A.G. Zavodovsky, Evidence of liquid water formation during methane hydrates dissociation below the ice point, Chem. Eng. Sci. 64(2009) 1160-1166. [54] T. Yagasaki, M. Matsumoto, Y. Andoh, S. Okazaki, H. Tanaka, Effect of bubble formation on the dissociation of methane hydrate in water:A molecular dynamics study, J. Phys. Chem. B 118(2014) 1900-1906. [55] L. Yang, A. Falenty, M. Chaouachi, D. Haberthür, W.F. Kuhs, Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix, Geochem. Geophys. Geosyst. 17(2016) 3717-3732. [56] Y. Handa, Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 K for clathrate hydrates of xenon and krypton, J. Chem. Thermodyn. 18(1986) 891-902. [57] C.G. Pruteanu, G.J. Ackland, W.C. Poon, J.S. Loveday, When immiscible becomes miscible-methane in water at high pressures, Sci. Adv. 3(2017), e1700240. [58] Y.V.S. Istomin, A. V, N.A. Makhonina, et al., Self-preservation Phenomenon of Gas Hydrate, Gas Industry of Russia, 200616-27. [59] J.S. Gudmundsson, M. Parlaktuna, A. Khokhar, Storage of natural gas as frozen hydrate, SPE Production & Facilities 9(1994) 69-73. [60] T. Ebinuma, S. Takeya, E.M. Chuvilin, Y. Kamata, T. Uchida, J. Nagao, H. Narita, Dissociation behaviors of gas hydrates at low temperature, Proc. 4th International Hydrate Conference 2002, pp. 19-23. [61] A. Falenty, W.F. Kuhs, M. Glockzin, G. Rehder, "Self-preservation" of CH4 hydrates for gas transport technology:pressure-temperature dependence and ice microstructures, Energ Fuel 28(2014) 6275-6283. [62] A. Falenty, W.F. Kuhs, "Self-preservation" of CO2 gas hydrates-surface microstructure and ice perfection, J. Phys. Chem. B 113(2009) 15975-15988. [63] V. Istomin, On the possibilities of natural gas hydrates and other water crystalline structures superheating, Zhurnal Fizicheskoi Khimii (Journal of Physical Chemistry) 73(1999) 2091-2095. [64] O.I.Levik,Thermophysical and compositional propertiesofnaturalgas hydrate,Ph. D Thesis, Norwegian University of Science and Techhnology, Norway, 2000. [65] V. Istomin, On possibility of superheating of natural gas hydrates and other hydrogencontaining crystalline structures, Russ. J. Phys. Chem. 73(1999) 1887-1890. [66] S. Takeya, T. Ebinuma, T. Uchida, J. Nagao, H. Narita, Self-preservation effect and dissociation rates of CH4 hydrate, J. Cryst. Growth 237(2002) 379-382. [67] S. Takeya, W. Shimada, Y. Kamata, T. Ebinuma, T. Uchida, J. Nagao, H. Narita, In situ X-ray diffraction measurements of the self-preservation effect of CH4 hydrate, J. Phys. Chem. A 105(2001) 9756-9759. [68] W. Lin, G.J. Chen, C.Y. Sun, X.Q. Guo, Z.K. Wu, M.Y. Liang, L.T. Chen, L.Y. Yang, Effect of surfactant on the formation and dissociation kinetic behavior of methane hydrate, Chem. Eng. Sci. 59(2004) 4449-4455. [69] X. Wang, G. Chen, C. Sun, L. Yang, Q. Ma, J. Chen, P. Liu, X.l. Tang, H. Zhao, W. Chen, The dependence of the dissociation rate of methane-SDS hydrate below ice point on its manners of forming and processing, Chin. J. Chem. Eng. 17(2009) 128-135. [70] M. Liang, G. Chen, C. Sun, L. Yan, J. Liu, Q. Ma, Experimental and modeling study on decomposition kinetics of methane hydrates in different media, J. Phys. Chem. B 109(2005) 19034-19041. [71] S. Takeya, T. Uchida, J. Nagao, R. Ohmura, W. Shimada, Y. Kamata, T. Ebinuma, H. Narita, Particle size effect of CH4 hydrate for self-preservation, Chem. Eng. Sci. 60(2005) 1383-1387. [72] S. Circone, L.A. Stern, S.H. Kirby, The effect of elevated methane pressure on methane hydrate dissociation, Am. Mineral. 89(2004) 1192-1201. [73] B. Mason, G. Bryant, A. Van den Heuvel, The growth habits and surface structure of ice crystals, Philos. Mag. 8(1963) 505-526. [74] A. Falenty, T.C. Hansen, W.F. Kuhs, Formation and properties of ice XVI obtained by emptying a type sⅡ clathrate hydrate, Nature 516(2014) 231-233. [75] V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, V.A. Istomin, V.G. Kwon, Stability and growth of gas hydrates below the ice-hydrate-gas equilibrium line on the P-T phase diagram, Chem. Eng. Sci. 65(2010) 906-914. [76] V.P. Melnikov, A.N. Nesterov, A.M. Reshetnikov, V.A. Istomin, Metastable states during dissociation of carbon dioxide hydrates below 273K, Chem. Eng. Sci. 66(2011) 73-77. [77] M.S. Madygulov, A.N. Nesterov, A.M. Reshetnikov, V.A. Vlasov, A.G. Zavodovsky, Study of gas hydrate metastability and its decay for hydrate samples containing unreacted supercooled liquid water below the ice melting point using pulse NMR, Chem. Eng. Sci. 137(2015) 287-292. [78] Y. Kuang, X. Lei, L. Yang, Y. Zhao, J. Zhao, Observation of in situ growth and decomposition of carbon dioxide hydrate at gas-water interfaces using magnetic resonance imaging, Energ Fuel 32(2018) 6964-6969. [79] M.Z. Faizullin, A.V. Vinogradov, V.P. Koverda, Hydrate formation in layers of gas-saturated amorphous ice, Chem. Eng. Sci. 130(2015) 135-143. [80] H. Ohno, T.A. Strobel, S.F. Dec, J.E.D. Sloan, C.A. Koh, Raman studies of methane-ethane hydrate metastability, J. Phys. Chem. A 113(2009) 1711-1716. |