Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (4): 935-948.DOI: 10.1016/j.cjche.2019.11.008
• Reviews • Next Articles
Jingyun Weng, Yiping Huang, Dule Hao, Yuanhui Ji
Received:
2019-07-25
Revised:
2019-11-20
Online:
2020-07-27
Published:
2020-04-28
Contact:
Yuanhui Ji
Supported by:
Jingyun Weng, Yiping Huang, Dule Hao, Yuanhui Ji
通讯作者:
Yuanhui Ji
基金资助:
Jingyun Weng, Yiping Huang, Dule Hao, Yuanhui Ji. Recent advances of pharmaceutical crystallization theories[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 935-948.
Jingyun Weng, Yiping Huang, Dule Hao, Yuanhui Ji. Recent advances of pharmaceutical crystallization theories[J]. 中国化学工程学报, 2020, 28(4): 935-948.
[1] J. Chen, B. Sarma, J.M. Evans, A.S. Myerson, Pharmaceutical crystallization, Cryst. Growth Des. 11(2011) 887-895. [2] W.Y. Su, N. Jia, H.S. Li, H.X. Hao, C.L. Li, Polymorphism of D-mannitol:Crystal structure and the crystal growth mechanism, Chin. J. Chem. Eng. 25(2017) 358-362. [3] Q. Chen, F. Zou, P. Yang, J. Zhou, J. Wu, W. Zhuang, H. Ying, Transformation of microstructure and phase of disodium guanosine 5'-monophosphate:thermodynamic perspectives, Chin. J. Chem. Eng. 26(2018) 2112-2120. [4] D. Erdemir, A.Y. Lee, A.S. Myerson, Nucleation of crystals from solution:classical and two-step models, Acc. Chem. Res. 42(2009) 621-629. [5] M.A. Sharaf, R.A. Dobbins, A comparison of measured nucleation rates with the predictions of several theories of homogeneous nucleation, J. Chem. Phys. 77(1982) 1517-1526. [6] B.E. Wyslouzil, J. Wolk, Overview:homogeneous nucleation from the vapor phasethe experimental science, J. Chem. Phys. 145(2016) 211702. [7] N.I. Diamantonis, G.C. Boulougouris, E. Mansoor, D.M. Tsangaris, I.G. Economou, Evaluation of cubic, SAFT, and PC-SAFT equations of state for the vapor-liquid equilibrium modeling of CO2 mixtures with other gases, Ind. Eng. Chem. Res. 52(2013) 3933-3942. [8] Z. Khedri, M. Almasi, A. Maleki, Thermodynamic properties of 1-hexyl-3-methylimidazolium nitrate and 1-alkanols mixtures:PC-SAFT model, J. Chem. Eng. Data 64(2019) 4465-4473. [9] I. Abala, F.E.M.h. Alaoui, A. Sahib Eddine, F. Aguilar, N.M. Rujas, E. Montero, (ρ, VE, T) Measurements of the ternary mixture (dibutyl ether +1-heptanol + heptane) at temperatures up to 393.15 K and pressures up to 140 MPa and modeling using the Peng-Robinson and PC-SAFT equations of state, J. Chem. Eng. Data 64(2019) 3861-3873. [10] J. Camacho, E. Diez, I. Diaz, G. Ovejero, PC-SAFT thermodynamics of EVA copolymer-Solvent systems, Fluid Phase Equilib. 449(2017) 10-17. [11] D.-H. Yoo, W.G. Lee, B.-S. Lee, Modeling phase behavior of poly(ethylene glycol) in supercritical fluids, J. Mol. Liq. 283(2019) 332-337. [12] Y. Ji, R. Paus, A. Prudic, C. Lübbert, G. Sadowski, A novel approach for analyzing the dissolution mechanism of solid dispersions, Pharm. Res. 32(2015) 2559-2578. [13] R. Shahriari, M.R. Dehghani, Prediction of thermodynamic properties of aqueous electrolyte solutions using equation of state, AIChE J. 63(2017) 5083-5097. [14] B. Seo, T. Kim, S. Kim, J.H. Ryu, J. Ryu, J. Yoon, W.B. Lee, Y.-W. Lee, Interfacial structure analysis for the morphology prediction of adipic acid crystals from aqueous solution, Cryst. Growth Des. 17(2017) 1088-1095. [15] M. Salvalaglio, T. Vetter, M. Mazzotti, M. Parrinello, Controlling and predicting crystal shapes:the case of urea, Angew. Chem. Int. Ed. Engl. 52(2013) 13369-13372. [16] V.I. Kalikmanov, Classical nucleation theory, Nucleation Theory, Springer 2013, pp. 17-41. [17] G.C. Sosso, J. Chen, S.J. Cox, M. Fitzner, P. Pedevilla, A. Zen, A. Michaelides, Crystal nucleation in liquids:Open questions and future challenges in molecular dynamics simulations, Chem. Rev. 116(2016) 7078-7116. [18] E. Sanz, C. Vega, J. Espinosa, R. Caballero-Bernal, J. Abascal, C. Valeriani, Homogeneous ice nucleation at moderate supercooling from molecular simulation, J. Am. Chem. Soc. 135(2013) 15008-15017. [19] J. Merikanto, E. Zapadinsky, A. Lauri, H. Vehkamäki, Origin of the failure of classical nucleation theory:Incorrect description of the smallest clusters, Phys. Rev. Lett. 98(2007) 145702. [20] J. Julin, I. Napari, J. Merikanto, H. Vehkamäki, A thermodynamically consistent determination of surface tension of small Lennard-Jones clusters from simulation and theory, J. Chem. Phys. 133(2010)(044704). [21] S.T. Yau, P.G. Vekilov, Direct observation of nucleus structure and nucleation pathways in apoferritin crystallization, J. Am. Chem. Soc. 123(2001) 1080-1089. [22] B. O'Malley, I. Snook, Crystal nucleation in the hard sphere system, Phys. Rev. Lett. 90(2003)(085702). [23] D.W. Oxtoby, Crystal nucleation in simple and complex fluids, Philos. Trans. R. Soc. London, Ser. A 361(2003) 419-428. [24] P.G. Vekilov, Two-step mechanism for the nucleation of crystals from solution, J. Cryst. Growth 275(2005) 65-76. [25] D. Gebauer, M. Kellermeier, J.D. Gale, L. Bergström, H. Cölfen, Pre-nucleation clusters as solute precursors in crystallisation, Chem. Soc. Rev. 43(2014) 2348-2371. [26] P.R. ten Wolde, D. Frenkel, Enhancement of protein crystal nucleation by critical density fluctuations, Science 277(1997) 1975-1978. [27] O. Galkin, K. Chen, R.L. Nagel, R.E. Hirsch, P.G. Vekilov, Liquid-liquid separation in solutions of normal and sickle cell hemoglobin, Proc. Natl. Acad. Sci. U. S. A. 99(2002) 8479-8483. [28] B.A. Garetz, J. Matic, A.S. Myerson, Polarization switching of crystal structure in the nonphotochemical light-induced nucleation of supersaturated aqueous glycine solutions, Phys. Rev. Lett. 89(2002) 175501. [29] S. Chattopadhyay, D. Erdemir, J.M. Evans, J. Ilavsky, H. Amenitsch, C.U. Segre, A.S. Myerson, SAXS study of the nucleation of glycine crystals from a supersaturated solution, Cryst. Growth Des. 5(2005) 523-527. [30] Y. Peng, F. Wang, Z. Wang, A.M. Alsayed, Z. Zhang, A.G. Yodh, Y. Han, Two-step nucleation mechanism in solid-solid phase transitions, Nat. Mater. 14(2015) 101. [31] N.D. Loh, S. Sen, M. Bosman, S.F. Tan, J. Zhong, C.A. Nijhuis, P. Král, P. Matsudaira, U. Mirsaidov, Multistep nucleation of nanocrystals in aqueous solution, Nat. Chem. 9(2017) 77. [32] C. Guo, J. Wang, J. Li, Z. Wang, S. Tang, Kinetic pathways and mechanisms of twostep nucleation in crystallization, J. Phys. Chem. Lett. 7(2016) 5008-5014. [33] P.G. Vekilov, Nucleation, Cryst. Growth Des. 10(2010) 5007-5019. [34] W. Pan, A.B. Kolomeisky, P.G. Vekilov, Nucleation of ordered solid phases of proteins via a disordered high-density state:Phenomenological approach, J. Chem. Phys. 122(2005) 174905. [35] P.G. Vekilov, The two-step mechanism of nucleation of crystals in solution, Nanoscale 2(2010) 2346-2357. [36] D. Gebauer, A. Völkel, H. Cölfen, Stable prenucleation calcium carbonate clusters, Science 322(2008) 1819-1822. [37] J.P. Jolivet, E. Tronc, C. Chaneac, Iron oxides:From molecular clusters to solid. A nice example of chemical versatility, Compt. Rendus Geosci. 338(2006) 488-497. [38] K. Onuma, A. Ito, Cluster growth model for hydroxyapatite, Chem. Mater. 10(1998) 3346-3351. [39] H.J. Schöpe, G. Bryant, W. van Megen, Two-step crystallization kinetics in colloidal hard-sphere systems, Phys. Rev. Lett. 96(2006)(175701). [40] M.H. Nielsen, S. Aloni, J.J. De Yoreo, In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways, Science 345(2014) 1158-1162. [41] R. Li, X. Zhang, H. Dong, Q. Li, Z. Shuai, W. Hu, Gibbs-Curie-Wulff theorem in organic materials:a case study on the relationship between surface energy and crystal growth, Adv. Mater. 28(2016) 1697-1702. [42] V.A. Cimmelli, A. Romano, G. Starita, The Gibbs principle for the equilibrium of crystals, Int. J. Eng. Sci. 28(1990) 677-688. [43] E. Schonherr, K. Matsumoto, K. Murakami, The morphology of vapor grown C-60 crystals as an ideal example of the Gibbs-Wulff's law, in:S. Saito, T. Ando, Y.Iwasa, K. Kikuchi, M. Kobayashi, Y. Saito (Eds.),Nanonetwork Materials:Fullerenes, Nanotubes and Related Systems 2001, pp. 405-408. [44] J. Prywer, Explanation of some peculiarities of crystal morphology deduced from the BFDH law, J. Cryst. Growth 270(2004) 699-710. [45] W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, Growth mechanism and growth habit of oxide crystals, J. Cryst. Growth 203(1999) 186-196. [46] T.D. Turner, L.E. Hatcher, C.C. Wilson, K.J. Roberts, Habit modification of the active pharmaceutical ingredient lovastatin through a predictive solvent selection approach, J. Pharm. Sci. 108(2019) 1779-1787. [47] J.D.H. Donnay, D. Harker, A new law of crystal morphology extending the law of Bravais, Am. Mineral. 22(1937) 446-467. [48] X.B. Zhou, J.R. Zhu, J.M. Gu, X.R. Hu, A new polymorph of the gastrokinetic drug cisapride monohydrate, Acta Crystallogr, Sect. C:Struct. Chem. 74(2018) 690-695. [49] P. Hartman, H.K. Chan, Application of the periodic bond chain (PBC) theory and attachment energy consideration to derive the crystal morphology of hexamethylmelamine, Pharm. Res. 10(1993) 1052-1058. [50] M. Zhang, Z. Liang, F. Wu, J.-F. Chen, C. Xue, H. Zhao, Crystal engineering of ibuprofen compounds:From molecule to crystal structure to morphology prediction by computational simulation and experimental study, J. Cryst. Growth 467(2017) 47-53. [51] F. Shen, P. Lv, C. Sun, R. Zhang, S. Pang, The crystal structure and morphology of 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane (CL-20) p-Xylene solvate:A joint experimental and simulation study, Molecules 19(2014) 18574-18589. [52] Q. Yi, J. Chen, Y. Le, J. Wang, C. Xue, H. Zhao, Crystal structure and habit of dirithromycin acetone solvate:A combined experimental and simulative study, J. Cryst. Growth 372(2013) 193-198. [53] K.J. Roberts, R. Docherty, R. Tamura, Engineering Crystallography:From Molecule to Crystal to Functional Form, Springer, 2017. [54] J.W. Mullin, 6-Crystal growth, in:J.W. Mullin (Ed.), Crystallization, Fourth edition, Butterworth-Heinemann, Oxford 2001, pp. 216-288. [55] F. Frank, The influence of dislocations on crystal growth, Discuss. Faraday Soc. 5(1949) 48-54. [56] E. Budevski, G. Staikov, W. Lorenz, Electrocrystallization:Nucleation and growth phenomena, Electrochim. Acta 45(2000) 2559-2574. [57] M. Uwaha, Introduction to the BCF theory, Prog. Cryst. Growth Charact. Mater. 62(2016) 58-68. [58] K. Tsukamoto, In-situ observation of crystal growth and the mechanism, Prog. Cryst. Growth Charact. Mater. 62(2016) 111-125. [59] L. Jia, M. Svärd, Å.C. Rasmuson, Crystal growth of salicylic acid in organic solvents, Cryst. Growth Des. 17(2017) 2964-2974. [60] K.A. Jackson, The interface kinetics of crystal growth processes, Interface Sci. 10(2002) 159-169. [61] J.D. Weeks, G.H. Gilmer, Dynamics of crystal growth, Adv. Chem. Phys. (1979) 157-228. [62] S.T. Chui, J.D. Weeks, Phase transition in the two-dimensional Coulomb gas, and the interfacial roughening transition, Phys. Rev. B 14(1976) 4978-4982. [63] P. Bennema, H. Meekes, S.X.M. Boerrigter, H.M. Cuppen, M.A. Deij, J. van Eupen, P. Verwer, E. Vlieg, Crystal growth and morphology:new developments in an integrated Hartman-perdokconnected netroughening transition theory, supported by computer simulations, Cryst. Growth Des. 4(2004) 905-913. [64] A.J. Malkin, G. Kuznetsov Yu, T.A. Land, J.J. DeYoreo, A. McPherson, Mechanisms of growth for protein and virus crystals, Nat. Struct. Biol. 2(1995) 956-959. [65] F. Rosenberger, Protein crystallization, J. Cryst. Growth 166(1996) 40-54. [66] G. Li, D. Wang, Z. Huang, Study on interface-phase of crystal growth, J. Synth. Cryst. 30(2001) 171-177. [67] X. Yu, J. You, Y. Wang, Z. Cheng, B. Yu, S. Zhang, D. Sun, G. Jiang, Microprobe of structure of crystal/liquid interface boundary layers, Sci. China, Ser. E:Technol. Sci. 44(2001) 265-273. [68] L. Chen, L. Song, G. Lan, J. Wang, Solubility and metastable zone width measurement of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in ethanol + water, Chin. J. Chem. Eng. 25(2017) 646-651. [69] L. Zhou, Z. Wang, M. Zhang, M. Guo, S. Xu, Q. Yin, Determination of metastable zone and induction time of analgin for cooling crystallization, Chin. J. Chem. Eng. 25(2017) 313-318. [70] A. Prudic, Y. Ji, G. Sadowski, Thermodynamic phase behavior of API/polymer solid dispersions, Mol. Pharm. 11(2014) 2294-2304. [71] J. Gross, G. Sadowski, Perturbed-chain SAFT:An equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res. 40(2001) 1244-1260. [72] J. Gross, G. Sadowski, Application of the perturbed-chain SAFT equation of state to associating systems, Ind. Eng. Chem. Res. 41(2002) 5510-5515. [73] A. Prudic, T. Kleetz, M. Korf, Y. Ji, G. Sadowski, Influence of copolymer composition on the phase behavior of solid dispersions, Mol. Pharm. 11(2014) 4189-4198. [74] A. Prudic, Y. Ji, C. Luebbert, G. Sadowski, Influence of humidity on the phase behavior of API/polymer formulations, Eur. J. Pharm. Biopharm. 94(2015) 352-362. [75] A. Prudic, A.-K. Lesniak, Y. Ji, G. Sadowski, Thermodynamic phase behaviour of indomethacin/PLGA formulations, Eur. J. Pharm. Biopharm. 93(2015) 88-94. [76] R. Paus, E. Hart, Y. Ji, G. Sadowski, Solubility and caloric properties of cinnarizine, J. Chem. Eng. Data 60(2015) 2256-2261. [77] R. Paus, Y. Ji, L. Vahle, G. Sadowski, Predicting the solubility advantage of amorphous pharmaceuticals:a novel thermodynamic approach, Mol. Pharm. 12(2015) 2823-2833. [78] A.A. Noyes, W.R. Whitney, The rate of solution of solid substances in their own solutions, J. Am. Chem. Soc. 19(1897) 930-934. [79] A.T. Lu, M.E. Frisella, K.C. Johnson, Dissolution modeling:factors affecting the dissolution rates of polydisperse powders, Pharm. Res. 10(1993) 1308-1314. [80] G.K. Vudathala, J.A. Rogers, Dissolution of fludrocortisone from phospholipid coprecipitates, J. Pharm. Sci. 81(1992) 282-286. [81] T. Higuchi, Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices, J. Pharm. Sci. 52(1963) 1145-1149. [82] T. Higuchi, Rate of release of medicaments from ointment bases containing drugs in suspension, J. Pharm. Sci. 50(1961) 874-875. [83] L.P. De Almeida, S. Simões, P. Brito, A. Portugal, M. Figueiredo, Modeling dissolution of sparingly soluble multisized powders, J. Pharm. Sci. 86(1997) 726-732. [84] A. Hixson, J. Crowell, Dependence of reaction velocity upon surface and agitation, Ind. Eng. Chem. 23(1931) 923-931. [85] R.W. Korsmeyer, R. Gurny, E. Doelker, P. Buri, N.A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm. 15(1983) 25-35. [86] S. Dash, P.N. Murthy, L. Nath, P. Chowdhury, Kinetic modeling on drug release from controlled drug delivery systems, Acta Pol. Pharm. 67(2010) 217-223. [87] M. Dejmek, C.A. Ward, A statistical rate theory study of interface concentration during crystal growth or dissolution, J. Chem. Phys. 108(1998) 8698-8704. [88] R. Paus, Y. Ji, F. Braak, G. Sadowski, Dissolution of crystalline pharmaceuticals:Experimental investigation and thermodynamic modeling, Ind. Eng. Chem. Res. 54(2015) 731-742. [89] R. Paus, E. Hart, Y. Ji, A novel approach for predicting the dissolution profiles of pharmaceutical tablets, Eur. J. Pharm. Biopharm. 96(2015) 53-64. [90] Y. Ji, A.K. Lesniak, A. Prudic, R. Paus, G. Sadowski, Drug release kinetics and mechanism from PLGA formulations, AICHE J. 62(2016) 4055-4065. [91] Y. Ji, M. Lemberg, A. Prudic, R. Paus, G. Sadowski, Modeling and analysis of dissolution of paracetamol/Eudragit® formulations, Chem. Eng. Res. Des. 121(2017) 22-31. [92] R. Paus, Y. Ji, Modeling and predicting the influence of variable factors on dissolution of crystalline pharmaceuticals, Chem. Eng. Sci. 145(2016) 10-20. [93] R. Paus, A. Prudic, Y. Ji, Influence of excipients on solubility and dissolution of pharmaceuticals, Int. J. Pharm. 485(2015) 277-287. [94] T. Kawasaki, H. Tanaka, Formation of a crystal nucleus from liquid, Proc. Natl. Acad. Sci. U. S. A. 107(2010) 14036-14041. [95] T. Schilling, S. Dorosz, H.J. Schöpe, G. Opletal, Crystallization in suspensions of hard spheres:a Monte Carlo and molecular dynamics simulation study, J. Phys.:Condens. Matter 23(2011)(194120). [96] M. Matsumoto, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing, Nature 416(2002) 409-413. [97] L. Vrbka, P. Jungwirth, Homogeneous freezing of water starts in the subsurface, J. Phys. Chem. B 110(2006) 18126-18129. [98] M. Mucha, P. Jungwirth, Salt crystallization from an evaporating aqueous solution by molecular dynamics simulations, J. Phys. Chem. B 107(2003) 8271-8274. [99] T. Li, D. Donadio, G. Russo, G. Galli, Homogeneous ice nucleation from supercooled water, Phys. Chem. Chem. Phys. 13(2011) 19807-19813. [100] W. Zhu, F.S. Romanski, X. Meng, S. Mitra, M.S. Tomassone, Atomistic simulation study of surfactant and polymer interactions on the surface of a fenofibrate crystal, Eur. J. Pharm. Sci. 42(2011) 452-461. [101] M. Salvalaglio, C. Perego, F. Giberti, M. Mazzotti, M. Parrinello, Molecular-dynamics simulations of urea nucleation from aqueous solution, Proc. Natl. Acad. Sci. U. S. A. 112(2015) E6-14. [102] Y. Yang, D. Han, S. Du, S. Wu, J. Gong, Crystal morphology optimization of thiamine hydrochloride in solvent system:Experimental and molecular dynamics simulation studies, J. Cryst. Growth 481(2018) 48-55. [103] C.J. Schram, S.P. Beaudoin, L.S. Taylor, Polymer inhibition of crystal growth by surface poisoning, Cryst. Growth Des. 16(2016) 2094-2103. [104] S. Baghel, H. Cathcart, N.J. O'Reilly, Polymeric amorphous solid dispersions:a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class Ⅱ drugs, J. Pharm. Sci. 105(2016) 2527-2544. [105] B. Wang, D. Wang, S. Zhao, X. Huang, J. Zhang, Y. Lü, X. Liu, G. Lü, X. Ma, Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify, Eur. J. Pharm. Sci. 96(2017) 45-52. [106] S.K. Poornachary, V.D. Chia, Y. Yani, G. Han, P.S. Chow, R.B. Tan, Anisotropic crystal growth inhibition by polymeric additives:Impact on modulation of naproxen crystal shape and size, Cryst. Growth Des. 17(2017) 4844-4854. [107] T. Mandal, W. Huang, J.M. Mecca, A. Getchell, W.W. Porter, R.G. Larson, A framework for multi-scale simulation of crystal growth in the presence of polymers, Soft Matter 13(2017) 1904-1913. [108] M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Microsecond simulations of spontaneous methane hydrate nucleation and growth, Science 326(2009) 1095-1098. [109] J. Anwar, D. Zahn, Uncovering molecular processes in crystal nucleation and growth by using molecular simulation, Angew. Chem. Int. Ed. 50(2011) 1996-2013. [110] W. Huang, T. Mandal, R.G. Larson, Computational modeling of hydroxypropylmethylcellulose acetate succinate (hpmcas) and phenytoin interactions:A systematic coarse-graining approach, Mol. Pharm. 14(2017) 733-745. [111] T. Schilling, H.J. Schope, M. Oettel, G. Opletal, I. Snook, Precursor-mediated crystallization process in suspensions of hard spheres, Phys. Rev. Lett. 105(2010) (025701). [112] R.C. Bernardi, M.C. Melo, K. Schulten, Enhanced sampling techniques in molecular dynamics simulations of biological systems, Biochim. Biophys. Acta 1850(2015) 872-877. [113] T. Mandal, R.L. Marson, R.G. Larson, Coarse-grained modeling of crystal growth and polymorphism of a model pharmaceutical molecule, Soft Matter 12(2016) 8246-8255. [114] M. King, S. Pasler, C. Peter, Coarse-grained simulation of CaCO3 aggregation and crystallization made possible by nonbonded three-body interactions, J. Phys. Chem. C 123(2019) 3152-3160. [115] M. De Vivo, M. Masetti, G. Bottegoni, A. Cavalli, Role of molecular dynamics and related methods in drug discovery, J. Med. Chem. 59(2016) 4035-4061. [116] G.M. Torrie, J.P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation:Umbrella sampling, J. Comput. Phys. 23(1977) 187-199. [117] A. Barducci, M. Bonomi, M. Parrinello, Metadynamics, Wiley Interdiscip, Rev.:Comput. Mol. Sci. 1(2011) 826-843. [118] A. Laio, M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. U. S. A. 99(2002) 12562-12566. [119] J. Juraszek, G. Saladino, T. Van Erp, F. Gervasio, Efficient numerical reconstruction of protein folding kinetics with partial path sampling and pathlike variables, Phys. Rev. Lett. 110(2013)(108106). [120] T.S. Van Erp, P.G. Bolhuis, Elaborating transition interface sampling methods, J. Comput. Phys. 205(2005) 157-181. [121] R.J. Allen, C. Valeriani, P.R. ten Wolde, Forward flux sampling for rare event simulations, J. Phys.:Condens. Matter 21(2009)(463102). [122] C. Dellago, P.G. Bolhuis, P.L. Geissler, Transition path sampling, Adv. Chem. Phys. 123(2002) 1-78. [123] L. Filion, M. Hermes, R. Ni, M. Dijkstra, Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling:A comparison of simulation techniques, J. Chem. Phys. 133(2010) 244115. |
[1] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 99-107. |
[2] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[3] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[4] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[5] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[6] | Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 282-290. |
[7] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[8] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[9] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[10] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 364-371. |
[11] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[12] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[13] | Haoyu Yao, Dongxia Yan, Xingmei Lu, Qing Zhou, Yinan Bao, Junli Xu. Solubility determination and thermodynamic modeling of bis-2-hydroxyethyl terephthalate (BHET) in different solvents [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 294-300. |
[14] | Zhijie Shen, Jingchun Min. Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 497-506. |
[15] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1598
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 445
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||