[1] S. Mashaghi, A. Abbaspourrad, D.A. Weitz, A.M. van Oijen, Droplet microfluidics:a tool for biology, chemistry and nanotechnology, TrAC Trends Anal. Chem. 82(2016) 118-125. [2] H.C. Shum, A. Bandyopadhyay, S. Bose, D.A. Weitz, Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite, Chem. Mater. 21(2009) 5548-5555. [3] P. Sanguansri, M.A. Augustin, Nanoscale materials development-a food industry perspective, Trends Food Sci. Technol. 17(2006) 547-556. [4] Z.M. Liu, Y. Yang, Y. Du, Y. Pang, Advances in droplet-based microfluidic technology and its applications, Chin. J. Anal. Chem. 45(2017) 282-296. [5] V. Cristini, Y.C. Tan, Theory and numerical simulation of droplet dynamics in complex flows-a review, Lab Chip 4(2004) 257-264. [6] Y. Zhu, Q. Fang, Analytical detection techniques for droplet microfluidics-a review, Anal. Chim. Acta 787(2013) 24-35. [7] P. Zhu, L. Wang, Passive and active droplet generation with microfluidics:a review, Lab Chip 17(2017) 34-75. [8] J.H. Xu, S.W. Li, J. Tan, Y.J. Wang, G.S. Luo, Preparation of highly monodisperse droplet in a T-junction microfluidic device, AICHE J. 52(2006) 3005-3010. [9] L.Y. Wu, Y.P. Chen, Visualization study of emulsion droplet formation in a coflowing microchannel, Chem. Eng. Process. 85(2014) 77-85. [10] W.L. Ong, J. Hua, B. Zhang, T.Y. Teo, J. Zhuo, N.T. Nguyen, N. Ranganathan, L. Yobas, Experimental and computational analysis of droplet formation in a high-performance flow-focusing geometry, Sensors Actuators A 138(2007) 203-212. [11] S.K. Moon, I.W. Cheong, S.W. Choi, Effect of flow rates of the continuous phase on droplet size in dripping and jetting regimes in a simple fluidic device for coaxial flow, Colloids Surf. A Physicochem. Eng. Asp. 454(2014) 84-88. [12] C. Cramer, P. Fischer, E.J. Windhab, Drop formation in a co-flowing ambient fluid, Chem. Eng. Sci. 59(2004) 3045-3058. [13] A.S. Utada, A. Fernandez-Nieves, H.A. Stone, D.A. Weitz, Dripping to jetting transition in coflowing liquid streams, Phys. Rev. Lett. 99(2007)094502. [14] X.G. Zhang, Dynamics of drop formation in viscous flows, Chem. Eng. Sci. 12(1999) 1759-1774. [15] T. Alkayyali, T. Cameron, B. Haltli, R.G. Kerr, A. Ahmadi, Microfluidic and crosslinking methods for encapsulation of living cells and bacteria-a review, Anal. Chim. Acta 1053(2019) 1-21. [16] Y.C. Tan, V. Cristini, A.P. Lee, Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sensors Actuators B 114(2006) 350-356. [17] J. Wacker, V.K. Parashar, M.A.M. Gijs, Influence of oil type and viscosity on droplet size in a flow focusing microfluidic device, Proc. Chem. 1(2009) 1083-1086. [18] S. Kole, P. Bikkina, A parametric study on the application of microfluidics for emulsion characterization, J. Pet. Sci. Eng. 158(2017) 152-159. [19] A. Letícia, R. Costa, A. Gomes, R. Lopes Cunha, Studies of droplets formation regime and actual flow rate of liquid-liquid flows in flow-focusing microfluidic devices, Exp. Thermal Fluid Sci. 85(2017) 167-175. [20] P. Wu, Z. Luo, Z. Liu, Z. Li, C. Chen, L. Feng, L. He, Drag-induced breakup mechanism for droplet generation in dripping within flow focusing microfluidics, Chin. J. Chem. Eng. 23(2015) 7-14. [21] L. Wu, X. Liu, Y. Zhao, Y. Chen, Role of local geometry on droplet formation in axisymmetric microfluidics, Chem. Eng. Sci. 163(2017) 56-67. [22] Y. Pang, Y. Du, J. Wang, Z. Liu, Generation of single/double Janus emulsion droplets in co-flowing microtube, Int. J. Multiphase Flow 113(2019) 199-207. [23] C. Yu, L. Wu, L. Lia, M. Liu, Experimental study of double emulsion formation behaviors in a one-step axisymmetric flow-focusing device, Exp. Thermal Fluid Sci. 103(2019) 18-28. [24] M. Rahimi, A. Shams Korrami, P. Rezai, Effect of device geometry on droplet size in co-axial flow-focusing microfluidic droplet generation devices, Colloids Surf. A Physicochem. Eng. Asp. 570(2019) 510-517. [25] J. Li, Y.Y. Renardy, M. Renardy, Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method, Phys. Fluids 12(2000) 269-282. [26] Y. Kitamura, K. Kizu, T. Takahashi, Relatively low-concentrated O/W emulsion jets, Can. J. Chem. Eng. 63(1985) 244-249. [27] A.G. Gaonkar, Interracial tensions of vegetable oil/water systems:effect of oil purification, J. Am. Oil Chem. Soc. 66(1989) 1090-1092. [28] O. Fasina, Z. Colley, Viscosity and specific heat of vegetable oils as a function of temperature:35℃ to 180℃, Int. J. Food Prop. 11(2008) 738-746. [29] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ:25 years of image analysis, Nat. Methods 9(2012) 671-675. [30] A. Shams Khorrami, P. Rezai, Oscillating dispersed-phase co-flow microfluidic droplet generation:multi-droplet size effect, Biomicrofluidics. 12(2018), 034113. [31] A. Shams Khorrami, P. Rezai, Oscillating dispersed-phase co-flow microfluidic droplet generation:jet length reduction effectitle, Soft Matter 14(48) (2018) 9870-9876. |