Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 49-72.DOI: 10.1016/j.cjche.2021.08.023
• Review • Previous Articles Next Articles
Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo
Received:
2021-06-21
Revised:
2021-08-30
Online:
2022-02-25
Published:
2022-01-28
Contact:
Guangsheng Luo,E-mail address:gsluo@tsinghua.edu.cn
Supported by:
Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo
通讯作者:
Guangsheng Luo,E-mail address:gsluo@tsinghua.edu.cn
基金资助:
Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo. Reaction kinetics determination based on microfluidic technology[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 49-72.
Zifei Yan, Jiaxin Tian, Chencan Du, Jian Deng, Guangsheng Luo. Reaction kinetics determination based on microfluidic technology[J]. 中国化学工程学报, 2022, 41(1): 49-72.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.08.023
[1] S. Lu, K. Wang, Kinetic study of TBD catalyzed d-valerolactone polymerization using a gas-driven droplet flow reactor, React. Chem. Eng. 4(2019) 1189–1194. [2] Z. Yao, X. Xu, Y. Dong, X. Liu, B. Yuan, K. Wang, K. Cao, G. Luo, Kinetics on thermal dissociation and oligomerization of dicyclopentadiene in a high temperature & pressure microreactor, Chem. Eng. Sci. 228(2020) 115892. [3] X. Lin, K. Wang, B. Zhou, G. Luo, A microreactor-based research for the kinetics of polyvinyl butyral (PVB) synthesis reaction, Chem. Eng. J. 383(2020) 123181. [4] M. Guo, Q. Chen, Y. Liang, Y. Wang, G. Luo, H. Yu, Experimental and modelbased study of biohydration of acrylonitrile to acrylamide in a microstructured chemical system, AIChE J. 66(2020) e16298. [5] A. Hommes, A.J. ter Horst, M. Koeslag, H.J. Heeres, J. Yue, Experimental and modeling studies on the Ru/C catalyzed levulinic acid hydrogenation to cvalerolactone in packed bed microreactors, Chem. Eng. J. 399(2020) 125750. [6] Z. Yan, Z. Ma, J. Deng, G. Luo, Mechanism and kinetics of epoxide ring-opening with carboxylic acids catalyzed by the corresponding carboxylates, Chem. Eng. Sci. 242(2021) 116746. [7] Z. Yan, J. Tian, K. Wang, K.D.P. Nigam, G. Luo, Microreaction processes for synthesis and utilization of epoxides: A review, Chem. Eng. Sci. 229(2021) 116071. [8] J. Deng, J. Zhang, K. Wang, G. Luo, Microreaction Technology for Synthetic Chemistry, Chinese J. Chem. 37(2019) 161–170. [9] Y. Lu, D. Xin, J. Zhang, G. Luo, Modeling ethyl diazoacetate synthesis in an adiabatic microchemical system, Chem. Eng. J. 273(2015) 406–412. [10] C. Shen, M. Shang, H. Zhang, Y. Su, A UV-LEDs based photomicroreactor for mechanistic insights and kinetic studies in the norbornadiene photoisomerization, AIChE J. 66(2020) e16841. [11] H. Keles, F. Susanne, H. Livingstone, S. Hunter, C. Wade, R. Bourdon, A. Rutter, Development of a robust and reusable microreactor employing laser based mid-IR chemical imaging for the automated quantification of reaction kinetics, Org. Process Res. Dev. 21(2017) 1761–1768. [12] D. Russo, G. Tomaiuolo, R. Andreozzi, S. Guido, A.A. Lapkin, I. Di Somma, Heterogeneous benzaldehyde nitration in batch and continuous flow microreactor, Chem. Eng. J. 377(2019) 120346. [13] M.N. Kashid, A. Renken, L. Kiwi-Minsker, Gas–liquid and liquid–liquid mass transfer in microstructured reactors, Chem. Eng. Sci. 66(2011) 3876– 3897. [14] Z. Wen, M. Yang, S. Zhao, F. Zhou, G. Chen, Kinetics study of heterogeneous continuous-flow nitration of trifluoromethoxybenzene, React. Chem. Eng. 3(2018) 379–387. [15] P. Wang, K. Wang, J. Zhang, G. Luo, Kinetic study of reactions of aniline and benzoyl chloride in a microstructured chemical system, AIChE J. 61(2015) 3804–3811. [16] N. Padoin, L. Andrade, J. Ângelo, A. Mendes, R.D.F.P. Moreira, C. Soares, Intensification of photocatalytic pollutant abatement in microchannel reactor using TiO2 and TiO2-graphene, AIChE J. 62(2016) 2794–2802. [17] C. Dong, K. Wang, J.S. Zhang, G.S. Luo, Reaction kinetics of cyclohexanone ammoximation over TS-1 catalyst in a microreactor, Chem. Eng. Sci. 126(2015) 633–640. [18] M. Krivec, A. Pohar, B. Likozar, G. Dražić, Hydrodynamics, mass transfer, and photocatalytic phenol selective oxidation reaction kinetics in a fixed TiO2 microreactor, AIChE J. 61(2015) 572–581. [19] J.P. Mcmullen, K.F. Jensen, Rapid determination of reaction kinetics with an automated microfluidic system, Org. Process Res. Dev. 15(2011) 398–407. [20] N.T. Nguyen, Z.G. Wu, Micromixers-a review, J. Micromech. Microeng. 15(2005) R1–R16. [21] K. Wang, G. Luo, Microflow extraction: A review of recent development, Chem. Eng. Sci. 169(2017) 18–33. [22] J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and scaling up of microchemical systems: a review, Annu. Rev. Chem. Biomol. 8(2017) 285–305. [23] J. Sui, J. Yan, D. Liu, K. Wang, G. Luo, Continuous synthesis of nanocrystals via flow chemistry technology, Small 16(2020) 1902828. [24] F. Benito-Lopez, W. Verboom, M. Kakuta, J.H.G.E. Gardeniers, R.J.M. Egberink, E. R. Oosterbroek, A. van den Berg, D.N. Reinhoudt, Optical fiber-based on-line UV/Vis spectroscopic monitoring of chemical reaction kinetics under high pressure in a capillary microreactor, Chemical communications (Cambridge, England) (2005) 2857-2859 [25] A. Muto, M. Ebata, A. Inoue. Development of a microreactor for rapid analysis of chemical reaction kinetics with absorption specrtoscopy, IEEE, 2008. [26] X. Duan, J. Tu, A.R. Teixeira, L. Sang, K.F. Jensen, J. Zhang, An automated flow platform for accurate determination of gas-liquid-solid reaction kinetics, React. Chem. Eng. 5(2020) 1751–1758. [27] J.S. Moore, C.D. Smith, K.F. Jensen, Kinetics analysis and automated online screening of aminocarbonylation of aryl halides in flow, React. Chem. Eng. 1(2016) 272–279. [28] Y.F. Han, M.J. Kahlich, M. Kinne, R.J. Behm, Kinetic study of selective CO oxidation in H2-rich gas on a Ru/c-Al2O3 catalyst, Phys. Chem. Chem. Phys. 4(2002) 389–397. [29] J.S. Moore, K.F. Jensen, “Batch” Kinetics in flow: online IR analysis and continuous control, Angewandte Chemie International Edition 53(2014) 470– 473. [30] K. Wang, Y.C. Lu, Y. Xia, H.W. Shao, G.S. Luo, Kinetics research on fast exothermic reaction between cyclohexanecarboxylic acid and oleum in microreactor, Chem. Eng. J. 169(2011) 290–298. [31] C. Zhang, J. Zhang, G. Luo, Kinetics determination of fast exothermic reactions with infrared thermography in a microreactor, J. Flow Chem. 10(2020) 219– 226. [32] J.S. Zhang, C.Y. Zhang, G.T. Liu, G.S. Luo, Measuring enthalpy of fast exothermal reaction with infrared thermography in a microreactor, Chem. Eng. J. 295(2016) 384–390. [33] Z. Lan, Y. Lu, Continuous nitration of o-dichlorobenzene in micropacked-bed reactor: process design and modelling, J. Flow Chem. 11(2021) 171–179. [34] J. Grant, P.T.O. Kane, B.R. Kimmel, M. Mrksich, Using microfluidics and imaging SAMDI-MS to characterize reaction kinetics, ACS Cent. Sci. 5(2019) 486–493. [35] E. Fradet, P. Abbyad, M.H. Vos, C.N. Baroud, Parallel measurements of reaction kinetics using ultralow-volumes, Lab Chip 13(2013) 4326–4330. [36] C. Zheng, B. Zhao, K. Wang, G. Luo, Determination of kinetics of CO2 absorption in solutions of 2-amino-2-methyl-1-propanol using a microfluidic technique, AIChE J. 61(2015) 4358–4366. [37] A.A. Kulkarni, Continuous flow nitration in miniaturized devices, Beilstein J. Org. Chem. 10(2014) 405–424. [38] L. Li, C. Yao, F. Jiao, M. Han, G. Chen, Experimental and kinetic study of the nitration of 2-ethylhexanol in capillary microreactors, Chem. Eng. Process. Process Intensif. 117(2017) 179–185. [39] C. Zhang, J. Zhang, G. Luo, Kinetic study and intensification of acetyl guaiacol nitration with nitric acid—acetic acid system in a microreactor, J. Flow Chem. 6(2016) 309–314. [40] J. Tan, L. Du, Y.C. Lu, J.H. Xu, G.S. Luo, Development of a gas–liquid microstructured system for oxidation of hydrogenated 2-ethyltetrahydroanthraquinone, Chem. Eng. J. 171(2011) 1406–1414. [41] K. Bawornruttanaboonya, N. Laosiripojana, A.S. Mujumdar, S. Devahastin, Catalytic partial oxidation of CH4 over bimetallic Ni-Re/Al2O3: Kinetic determination for application in microreactor, AIChE J. 64(2018) 1691–1701. [42] R.H. Nibbelke, M.A.J. Campman, J.H.B.J. Hoebink, G.B. Marin, Kinetic Study of the CO Oxidation over Pt/c-Al2O3 and Pt/Rh/CeO2/c-Al2O3 in the Presence of H2O and CO2, J. Catal. 171(1997) 358–373. [43] G. Nikolaidis, T. Baier, R. Zapf, G. Kolb, V. Hessel, W.F. Maier, Kinetic study of CO preferential oxidation over Pt–Rh/c-Al2O3 catalyst in a micro-structured recycle reactor, Catal. Today 145(2009) 90–100. [44] V. Russo, T. Kilpiö, J. Hernandez Carucci, M. Di Serio, T.O. Salmi, Modeling of microreactors for ethylene epoxidation and total oxidation, Chem. Eng. Sci. 134(2015) 563–571. [45] F. Ebrahimi, E. Kolehmainen, A. Laari, H. Haario, D. Semenov, I. Turunen, Determination of kinetics of percarboxylic acids synthesis in a microreactor by mathematical modeling, Chem. Eng. Sci. 71(2012) 531–538. [46] H. Zhao, S. Liu, M. Shang, Y. Su, Direct oxidation of benzene to phenol in a microreactor: Process parameters and reaction kinetics study, Chem. Eng. Sci. 246(2021) 116907. [47] G. Li, S. Liu, X. Dou, H. Wei, M. Shang, Z.H. Luo, Y. Su, Synthesis of adipic acid through oxidation of K/A oil and its kinetic study in a microreactor system, AIChE J. 66(2020) e16289. [48] T.A. Nijhuis, J. Chen, S.M.A. Kriescher, J.C. Schouten, The direct epoxidation of propene in the explosive regime in a microreactor-a study into the reaction kinetics, Ind. Eng. Chem. Res. 49(2010) 10479–10485. [49] Z. Vajglová, N. Kumar, K. Eränen, M. Peurla, D.Y. Murzin, T. Salmi, Ethene oxychlorination over CuCl2/c-Al2O3 catalyst in micro- and millistructured reactors, J. Catal. 364(2018) 334–344. [50] G. Wu, E. Cao, P. Ellis, A. Constantinou, S. Kuhn, A. Gavriilidis, Continuous flow aerobic oxidation of benzyl alcohol on Ru/Al2O3 catalyst in a flat membrane microchannel reactor: An experimental and modelling study, Chem. Eng. Sci. 201(2019) 386–396. [51] J. Singh, N. Kockmann, K.D.P. Nigam, Novel three-dimensional microfluidic device for process intensification, Chem. Eng. Process. Process Intensif. 86(2014) 78–89. [52] Y. Maralla, S.H. Sonawane, Process intensification by using a helical capillary microreactor for a continuous flow synthesis of peroxypropionic acid and its kinetic study, Periodica Polytechnica Chem. Eng. 64(2019) 9–19. [53] A. Tušek, A. Aalić, B. Zelić Kurtanjek, Modeling and kinetic parameter estimation of alcohol dehydrogenase-catalyzed hexanol oxidation in a microreactor, Eng. Life Sci. 12(2012) 49–56. [54] A.A. Mirzaei, A. Pourdolat, M. Arsalanfar, H. Atashi, A.R. Samimi, Kinetic study of CO hydrogenation on the MgO supported Fe–Co–Mn sol–gel catalyst, J. Ind. Eng. Chem. 19(2013) 1144–1152. [55] N. Mahata, V. Vishwanathan, Kinetics of phenol hydrogenation over supported palladium catalyst, J. Mol. Catal. A: Chem. 120(1997) 267–270. [56] N. Joshi, A. Lawal, Hydrodeoxygenation of 4-propylguaiacol (2-methoxy-4-propylphenol) in a microreactor: performance and kinetic studies, Ind. Eng. Chem. Res. 52(2013) 4049–4058. [57] S. Vahid, A.A. Mirzaei, An investigation of the kinetics and mechanism of Fischer-Tropsch synthesis on Fe–Co–Ni supported catalyst, J. Ind. Eng. Chem. 20(2014) 2166–2173. [58] A.A. Mirzaei, E. Rezazadeh, M. Arsalanfar, M. Abdouss, M. Fatemi, M. Sahebi, Study on the reaction mechanism and kinetics of CO hydrogenation on a fused Fe-Mn catalyst, RSC Adv. 5(2015) 95287–95299. [59] A. Tanimu, S.A. Ganiyu, O. Muraza, K. Alhooshani, Palladium nanoparticles supported on ceria thin film for capillary microreactor application, Chem. Eng. Res. Des. 132(2018) 479–491. [60] K. Maresz, A. Ciemięga, J. Mrowiec-Białoń, Monolithic microreactors of different structure as an effective tool for in flow MPV reaction, Chem. Eng. J. 379(2020) 122281. [61] A.A. Mirzaei, M. Farahi, M. Akbari, Effect of reduction and reaction conditions on the catalytic performance of Co–Ni/Al2O3 catalyst in CO hydrogenation: modeling of surface reaction rate, Chem. Pap. 75(2021) 2087–2103. [62] V. Vishwanathan, V. Jayasri, P. Mahaboob Basha, Vapor phase hydrogenation of o-chloronitrobenzene (o-CNB) over alumina supported palladium catalyst — a kinetic study, React. Kinet. Catal. Lett. 91(2007) 291–298. [63] F.E. Massoth, P. Politzer, M.C. Concha, J.S. Murray, J. Jakowski, J. Simons, Catalytic hydrodeoxygenation of methyl-substituted phenols: correlations of kinetic parameters with molecular properties, J. Phys. Chem. B 110(2006) 14283–14291. [64] P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino, E.E. Brock, Reactions at supercritical conditions: Applications and fundamentals, AIChE J. 41(1995) 1723–1778. [65] E. Ramírez, F. Recasens, M. Fernández, M.A. Larrayoz, Sunflower oil hydrogenation on Pd/C in SC propane in a continuous recycle reactor, AIChE J. 50(2004) 1545–1555. [66] E.V. Rebrov, A. Berenguer-Murcia, H.E. Skelton, B.F.G. Johnson, A.E.H. Wheatley, J.C. Schouten, Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports, Lab Chip 9(2009) 503–506. [67] S. Chatani, C.J. Kloxin, C.N. Bowman, The power of light in polymer science: photochemical processes to manipulate polymer formation, structure, and properties, Polym. Chem.-UK 5(2014) 2187–2221. [68] Y. Su, V. Hessel, T. Noel, A compact photomicroreactor design for kinetic studies of gas-liquid photocatalytic transformations, AIChE J. 61(2015) 2215– 2227. [69] M.L. Satuf, J. Macagno, A. Manassero, G. Bernal, P.A. Kler, C.L.A. Berli, Simple method for the assessment of intrinsic kinetic constants in photocatalytic microreactors, Appl. Catal. B 241(2019) 8–17. [70] G. Yu, N. Wang, Gas-liquid-solid interface enhanced photocatalytic reaction in a microfluidic reactor for water treatment, Appl. Catal. A 591(2020) 117410. [71] X. Shi, S. Liu, C. Duanmu, M. Shang, M. Qiu, C. Shen, Y. Yang, Y. Su, Visible-light photooxidation of benzene to phenol in continuous-flow microreactors, Chem. Eng. J. 420(2021) 129976. [72] D.D. Phan, F. Babick, T.H.T. Tr nh, M.T. Nguyen, W. Samhaber, M. Stintz, Investigation of fixed-bed photocatalytic membrane reactors based on submerged ceramic membranes, Chem. Eng. Sci. 191(2018) 332–342. [73] T. Aillet, K. Loubière, L. Prat, O. Dechy-Cabaret, Impact of the diffusion limitation in microphotoreactors, AIChE J. 61(2015) 1284–1299. [74] N. El Achi, F. Gelat, N.P. Cheval, A. Mazzah, Y. Bakkour, M. Penhoat, L. ChaussetBoissarie, C. Rolando, Sensitized [2+2] intramolecular photocycloaddition of unsaturated enones using UV LEDs in a continuous flow reactor: kinetic and preparative aspects, React. Chem. Eng. 4(2019) 828–837. [75] Y. Takahashi, A. Nagaki, Anionic polymerization using flow microreactors, Molecules 24(2019) 1532. [76] C.O.C. López, Z. Fejes, B. Viskolcz, Microreactor assisted method for studying isocyanate–alcohol reaction kinetics, J. Flow Chem. 9(2019) 199–204. [77] L. Qiu, K. Wang, S. Zhu, Y. Lu, G. Luo, Kinetics study of acrylic acid polymerization with a microreactor platform, Chem. Eng. J. 284(2016) 233– 239. [78] L. Xiang, Y. Song, M. Qiu, Y. Su, Synthesis of branched poly(butyl acrylate) using the strathclyde method in continuous-flow microreactors, Ind. Eng. Chem. Res. 58(2019) 21312–21322. [79] P. Wang, K. Wang, J. Zhang, G. Luo, Preparation of poly(p-phenylene terephthalamide) in a microstructured chemical system, RSC Adv. 5(2015) 64055–64064. [80] S.S. Cutie, P.B. Smith, D.E. Henton, T.L. Staples, C. Powell, Acrylic acid polymerization kinetics, J. Polym. Sci. Pol. Phys. 35(1997) 2029–2047. [81] J. Huang, F. Sang, G. Luo, J. Xu, Continuous synthesis of Gabapentin with a microreaction system, Chem. Eng. Sci. 173(2017) 507–513. [82] C. Du, J. Zhang, G. Luo, Organocatalyzed Beckmann rearrangement of cyclohexanone oxime in a microreactor: Kinetic model and product inhibition, AIChE J. 64(2018) 571–577. [83] L. Li, J. Zhang, C. Du, K. Wang, G. Luo, Kinetics study of sulfuric acid alkylation of isobutane and butene using a microstructured chemical system, Ind. Eng. Chem. Res. 58(2018) 1150–1158. [84] M. Shang, T. Noël, Y. Su, V. Hessel, Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors, AIChE J. 63(2017) 689–697. [85] J.S. Zhang, Y.C. Lu, Q.R. Jin, K. Wang, G.S. Luo, Determination of kinetic parameters of dehydrochlorination of dichloropropanol in a microreactor, Chem. Eng. J. 203(2012) 142–147. [86] K. Shibatani, K. Fujii, Reaction of poly(vinyl alcohol) with formaldehyde and polymer stereoregularity-model compounds, J. Polym. Sci. Part A-1-Polym. Chem. 8(1970) 1647. |
[1] | Hualiang An, Rui Wang, Wenhao Wang, Daolai Sun, Xinqiang Zhao, Yanji Wang. A core–shell Ni/SiO2@TiO2 catalyst for highly selective one-step synthesis of 2-propylheptanol from n-pentanal [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 104-112. |
[2] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[3] | Lingrui Cui, Jun Xu, Mannian Ren, Tao Li, Dianhua Liu, Fahai Cao. Modification of FCC slurry oil and deoiled asphalt for making high-grade paving asphalt [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 300-309. |
[4] | N. M'hanni, T. Anik, R. Touir, M. Galai, M. Ebn Touhami, E.H. Rifi, Z. Asfari, S. Bakkali. Effect of additives on nickel-phosphorus deposition obtained by electroless plating: Characterization and corrosion resistance in 3%(mass) sodium chloride medium [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 341-350. |
[5] | Lei Hu, Shunhui Tao, Junting Xian, Xiaodong Zhang, Yao Liu, Xiaojie Zheng, Xiaoqing Lin. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 230-239. |
[6] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
[7] | Fang Yang, Wei Zhao, Guiren Wang. Electrokinetic mixing of two fluids with equivalent conductivity [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 256-260. |
[8] | Peng Song, Yan Li, Shuang Yin. Mechanistic insights into homogeneous electrocatalytic reaction for energy storage using finite element simulation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 285-296. |
[9] | Shichao Yu, Rui Liao, Baojun Yang, Chaojun Fang, Zhentang Wang, Yuling Liu, Baiqiang Wu, Jun Wang, Guanzhou Qiu. Chalcocite (bio)hydrometallurgy—current state, mechanism, and future directions: A review [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 109-120. |
[10] | Zeren Shang, Mingchen Li, Baohong Hou, Junli Zhang, Kuo Wang, Weiguo Hu, Tong Deng, Junbo Gong, Songgu Wu. Ultrasound assisted crystallization of cephalexin monohydrate: Nucleation mechanism and crystal habit control [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 430-440. |
[11] | Tao Zhao, Dazhong Zhong, Genyan Hao, Guang Liu, Jinping Li, Qiang Zhao. Ag nanoparticles anchored on MIL-100/nickel foam nanosheets as an electrocatalyst for efficient oxygen evolution reaction performance [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 480-487. |
[12] | Cao Kuang, Shuzhong Wang, Ming Luo, Jun Zhao. Reactivity study and kinetic evaluation of CuO-based oxygen carriers modified by three different ores in chemical looping with oxygen uncoupling (CLOU) process [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 54-63. |
[13] | Xiaoda Wang, Wenkai Li, Shiwei Wang, Qinglian Wang, Ling Li, Hongxing Wang, Ting Qiu. Reaction kinetics for the heterogeneously resin-catalyzed and homogeneously self-catalyzed esterification of thioglycolic acid with 2-ethyl-1-hexanol [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 111-119. |
[14] | Bo Zhang, Bolun Yang, Wei Guo, Song Wu, Jie Zhang, Zhiqiang Wu. Chemical looping gasification of maceral from low-rank coal: Products distribution and kinetic analysis on vitrinite [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 233-241. |
[15] | Huaiqing An, Hua Li, Jibin Zhou, Jinling Zhang, Tao Zhang, Mao Ye, Zhongmin Liu. Kinetics of steam regeneration of SAPO-34 zeolite catalyst in methanol-to-olefins (MTO) process [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 231-238. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||