[1] C.M. Payne, B.C. Knott, H.B. Mayes, H. Hansson, M.E. Himmel, M. Sandgren, J. Ståhlberg, G.T. Beckham, Fungal cellulases, Chem. Rev. 115(2015) 1308-1448. [2] S.M. Cragg, G.T. Beckham, N.C. Bruce, T.D. Bugg, D.L. Distel, P. Dupree, A.G. Etxabe, B. S. Goodell, J. Jellison, J.E. McGeehan, S.J. McQueen-Mason, K. Schnorr, P.H. Walton, J. E. Watts, M. Zimmer, Lignocellulose degradation mechanisms across the tree of life, Curr. Opin. Chem. Biol. 29(2015) 108-119. [3] L. Du, L. Ma, Q. Ma, G. Guo, X. Han, D. Xiao, Hydrolytic boosting of lignocellulosic biomass by a fungal lytic polysaccharide monooxygenase, AnLPMO15g from Aspergillus niger, Ind. Crop. Prod. 126(2018) 309-315. [4] S.K. Soni, A. Sharma, R. Soni, Cellulases:Role in lignocellulosic biomass utilization, in:M. Lübeck (Ed.), Cellulases, Humana Press, New Jersey, 2018. [5] Z. Zhou, F. Lei, P. Li, J. Jiang, Lignocellulosic biomass to biofuels and biochemicals:A comprehensive review with a focus on ethanol organosolv pretreatment technology, Biotechnol. Bioeng. 115(2018) 2683-2702. [6] H.B. Lei, J. Wang, Study on the mechanism of improving the digestibility of ruminant to roughage fiber by different processing methods, Journal of Animal Science and Veterinary Medicine 38(2019) 50-52. [7] R. Liu, Q. Han, Q.Q. Qian, X.W. Peng, Process optimization and analysis of hydrolyzate in paper mill sludge hydrolysis with cellulase, China Pulp & Paper 35(2016) 42-46. [8] J.Xue,X.G.Li,J.Z.Wang,F.J.Wang,Optimizationofenzymatichydrolysisforproduction Aronia melanocarpa juice and functional properties, Sci. Technol. Food Ind. (2019) 1-17. [9] Y.Y. Yu, Q. Wang, X.R. Fan, Application of cellulase for cellulosic fabrics finishing, Textile Dyeing and Finishing Journal 39(2017) 1-5. [10] R. Peterson, H. Nevalainen, Trichoderma reesei RUT-C30-thirty years of strain improvement, Microbiology 158(2011) 58-68. [11] D.S. Xue, H.Y. Chen, D.Q. Lin, Y.X. Guan, S.J. Yao, Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology, Appl. Biochem. Biotechnol. 167(2012) 1963-1972. [12] D.U. Jung, H.Y. Yoo, S.B. Kim, J.H. Lee, C. Park, S.W. Kim, Optimization of medium composition for enhanced cellulase production by mutant Penicillium brasilianum KUEB15 using statistical method, J. Ind. Eng. Chem. 25(2015) 145-150. [13] A. Sørensen, M. Lübeck, P. Lübeck, B. Ahring, Fungal beta-glucosidases:A bottleneck in industrial use of lignocellulosic materials, Biomolecules 3(2013) 612-631. [14] R.R. Singhania, R.K. Sukumaran, A.K. Patel, C. Larroche, A. Pandey, Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases, Enzym. Microb. Technol. 46(2010) 541-549. [15] J.J. Cai, X.H. Duan, L. Xie, X.F. Zheng, J.T. Shen, Production of cellulases by solid state fermentation with three strains mixed, China Biotechnology 33(2013) 57-63. [16] X. Tu, Q.H. Xue, M.R. Si, M.F. Gong, Effects of mixed poly-fermentation on cellulase activity, Industrial Microbiology (2004) 30-34. [17] B.B. Wang, L.M. Xia, High efficient expression of cellobiase gene from Aspergillus niger in the cells of Trichoderma reesei, Bioresour. Technol. 102(2011) 4568-4572. [18] M. Dashtban, W. Qin, Overexpression of an exotic thermotolerant beta-glucosidase in Trichoderma reesei and its significant increase in cellulolytic activity and saccharification of barley straw, Microb. Cell Factories 11(2012) 63. [19] H. Fang, L. Xia, High activity cellulase production by recombinant Trichoderma reesei ZU-02 with the enhanced cellobiohydrolase production, Bioresour. Technol. 144(2013) 693-697. [20] D.S. Xue, L.Y. Liang, G. Zheng, D.Q. Lin, Q.L. Zhang, S.J. Yao, Expression of Piromyces rhizinflata cellulase in marine Aspergillus niger to enhance halostable cellulase activity by adjusting enzyme-composition, Biochem. Eng. J. 117(2017) 156-161. [21] C.P. Kubicek, M. Mikus, A. Schuster, M. Schmoll, B. Seiboth, Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina, Biotechnol. Biofuels 2(2009) 19. [22] T. Nakari-Setala, M. Paloheimo, J. Kallio, J. Vehmaanpera, M. Penttila, M. Saloheimo, Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production, Appl. Environ. Microbiol. 75(2009) 4853-4860. [23] N. Aro, M. Ilmen, A. Saloheimo, M. Penttila, ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression, Appl. Environ. Microbiol. 69(2003) 56-65. [24] S. DasSarma, P. DasSarma, Halophiles and their enzymes:Negativity put to good use, Curr. Opin. Microbiol. 25(2015) 120-126. [25] X.Q. Wang, X. Xing, F.J. Zhang, K. Xin, Biological improvement of saline alkali soil reference system:A review, Sciences in Cold and Arid Regions 10(2018) 516-521. [26] M. Galbe, G. Zacchi, Pretreatment of lignocellulosic materials for efficient bioethanol production, in:L. Olsson (Ed.), Biofuels, Springer, Berlin, 2007. [27] A. Brandt, M.J. Ray, T.Q. To, D.J. Leak, R.J. Murphy, T. Welton, Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures, Green Chem. 13(2011) 2489. [28] D.S. Xue, Production and Proerties of Salt-Tolerant Cellulase and β-Glucosidase from a Marine Aspergillus niger, Ph. D. Thesis, Zhejiang Univ., China, 2012. [29] D.M. Bai, Removal and Mechanism of Ni(Ⅱ) and Cr(VI) from Aqueous Solutions by Marine Aspergillus niger Mycelial Pellet, M. Phil. Thesis, Zhejiang Univ., China, 2016. [30] T. Lu, The Pellet-Formation Mechanism of Marine-Derived Aspergillus niger and its Application inDye-WastewaterTreatment, Ph.D.Thesis, ZhejiangUniv.,China,2016. [31] C.B. Michielse, P.J. Hooykaas, C.A. van den Hondel, A.F. Ram, Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori, Nat. Protoc. 3(2008) 1671-1678. [32] A.A. Wise, Z. Liu, A.N. Binns, Three methods for the introduction of foreign DNA into Agrobacterium, Methods Mol. Biol. 343(2006) 43-53. [33] N.J. Kruger, The Bradford method for protein quantitation, the protein protocols handbook, in:J.M. Walker (Ed.), The Protein Protocols Handbook, Humana Press, New Jersey, 2009. [34] T.M. Wood, K.M. Bhat, Methods for measuring cellulase activity, Methods Enzymol. 160(1988) 87-112. [35] L.N. Cai, S.N. Xu, T. Lu, D.Q. Lin, S.J. Yao, Directed expression of halophilic and acidophilic β-glucosidases by introducing homologous constitutive expression cassettes in marine Aspergillus niger, J. Biotechnol. 292(2019) 12-22. [36] R. Baghban, S. Farajnia, M. Rajabibazl, Y. Ghasemi, A. Mafi, R. Hoseinpoor, L. Rahbarnia, M. Aria, Yeast expression systems:Overview and recent advances, Mol. Biotechnol. 61(2019) 365-384. [37] A. Tsang, G. Butler, J. Powlowski, E.A. Panisko, S.E. Baker, Analytical and computational approaches to define the Aspergillus niger secretome, Fungal Genet. Biol. 46(2009) S153-S160. [38] L. Ma, J. Zhang, G. Zou, C. Wang, Z. Zhou, Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens, Enzym. Microb. Technol. 49(2011) 366-371. [39] H. Nakazawa, T. Kawai, N. Ida, Y. Shida, Y. Kobayashi, H. Okada, S. Tani, J. Sumitani, T. Kawaguchi, Y. Morikawa, W. Ogasawara, Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus beta-glucosidase 1 for efficient biomass conversion, Biotechnol. Bioeng. 109(2012) 92-99. [40] G.B. Sperandio, E.X. Ferreira Filho, Fungal co-cultures in the lignocellulosic biorefinery context:A review, Int. Biodeterior. Biodegradation 142(2019) 109-123. |