[1] H. Martin, K. Xenia, Immobilization of enzymes on porous silicas-benefits and challenges, Chem. Soc. Rev. 42(2013) 6277-6289. [2] I. Juneidi, M. Hayyan, M.A. Hashim, A. Hayyan, Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction, Biochem. Eng. J. 117(2017) 129-138. [3] R. Morales-Medina, M. Munio, A. Guadix, E.M. Guadix, F. Camacho, A lumped model of the lipase catalyzed hydrolysis of sardine oil to maximize polyunsaturated fatty acids content in acylglycerols, Food Chem. 240(2018) 286-294. [4] M. Sayed, Y. Gaber, A. Bornadel, S.H. Pyo, Multi-steps green process for synthesis of six-membered functional cyclic carbonate from trimethylolpropane by lipase catalyzed methacrylation and carbonation, and thermal cyclization, Biotechnol. Progr. 32(2016) 83-88. [5] A.R. Aguillón, M.N. Avelar, L.E. Gotardo, S.P. de Souza, R.A.C. Leão, I. Itabaiana, L.S.M. Miranda, R.O.M.A. de Souza, Immobilized lipase screening towards continuous-flow kinetic resolution of (±)-1,2-propanediol, Mol. Catal. 467(2019) 128-134. [6] C.-H. Kuo, Y.-C. Liu, C.-M.J. Chang, J.-H. Chen, C. Chang, C.-J. Shieh, Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles, Carbohydr. Polym. 87(2012) 2538-2545. [7] R.A. Sheldon, J.M. Woodley, Role of biocatalysis in sustainable chemistry, Chem. Rev. 118(2018) 801-838. [8] S.M. Hosseini, S.M. Kim, M. Sayed, H. Younesi, N. Bahramifar, J.H. Park, S.-H. Pyo, Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride, Biochem. Eng. J. 143(2019) 141-150. [9] P. Ye, J. Jiang, Z.K. Xu, Adsorption and activity of lipase from Candida rugosa on the chitosan-modified poly(acrylonitrile-co-maleic acid) membrane surface, Colloids Surf. B. 60(2007) 62-67. [10] A.T.-K. Asieh Soozanipour, Amir Landarani Isfahani, Covalent attachment of xylanase on functionalized magnetic nanoparticles and determination of its activity and stability, Chem. Eng. J. 270(2015) 235-243. [11] I. Venditti, C. Palocci, L. Chronopoulou, I. Fratoddi, L. Fontana, M. Diociaiuti, M.V. Russo, Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts:activity and stability investigations, Colloids Surf. B 131(2015) 93-101. [12] K. Saha, P. Verma, J. Sikder, S. Chakraborty, S. Curcio, Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse, Renew. Energ. 133(2019) 66-76. [13] H. Suo, Z. Gao, L. Xu, C. Xu, D. Yu, X. Xiang, H. Huang, Y. Hu, Synthesis of functional ionic liquid modified magnetic chitosan nanoparticles for porcine pancreatic lipase immobilization, Mat. Sci. Eng. C-Mater. 96(2019) 356-364. [14] G.J. Chen, C.H. Kuo, C.I. Chen, C.C. Yu, C.J. Shieh, Y.C. Liu, Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability, J. Biosci. Bioeng. 113(2012) 166-172. [15] P. Ye, Z.K. Xu, A.F. Che, J. Wu, P. Seta, Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization, Biomaterial. 26(2005) 6394-6403. [16] M. Liao, H. Liu, H. Guo, J. Zhou, Mesoscopic structures of poly(carboxybetaine) block copolymer and poly(ethylene glycol) block copolymer in solutions, Langmuir 33(2017) 7575-7582. [17] F.S. Peng Zhanga, Caroline Tsaoa, Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity, PNAS 112(2015) 12046-12051. [18] A. Venault, Y. Chang, Designs of zwitterionic interfaces and membranes, Langmuir 35(2019) 1714-1726. [19] S. Jiang, Z. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Adv. Mater. 22(2010) 920-932. [20] H. Qi, Y. Du, G. Hu, L. Zhang, Poly(carboxybetaine methacrylate)-functionalized magnetic composite particles:a biofriendly support for lipase immobilization, Int. J. Biol. Macromol. 107(2018) 2660-2666. [21] W. Lin, H. Zhang, J. Wu, Z. Wang, H. Sun, J. Yuan, S. Chen, A novel zwitterionic copolymer with a short poly(methyl acrylic acid) block for improving both conjugation and separation efficiency of a protein without losing its bioactivity, J. Mater. Chem. B 1(2013) 2482-2488. [22] L. Zhang, Y. Sun, Poly(carboxybetaine methacrylate)-grafted silica nanoparticle:a novel carrier for enzyme immobilization, Biochem. Eng. J. 132(2018) 122-129. [23] N. Chen, C. Zhang, Y. Liu, X. Dong, Y. Sun, Cysteine-modified poly(glycidyl methacrylate) grafted onto silica nanoparticles:new supports for significantly enhanced performance of immobilized lipase, Biochem. Eng. J. 145(2019) 137-144. [24] X. Sun, H. Wang, Y. Wang, T. Gui, K. Wang, C. Gao, Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning, Biosens. Bioelectron. 102(2018) 63-69. [25] Y. Wei, J. Zhang, X. Feng, D. Liu, Bioactive zwitterionic polymer brushes grafted from silicon wafers via SI-ATRP for enhancement of antifouling properties and endothelial cell selectivity, J. Biom. Sci-Polym. E. 28(2017) 2101-2116. [26] S.H. Tang, M.Y. Domino, A. Venault, H.T. Lin, C. Hsieh, A. Higuchi, A. Chinnathambi, S.A. Alharbi, L.L. Tayo, Y. Chang, Bio-inert control of zwitterionic poly(ethylene terephtalate) fibrous membranes, Langmuir. 35(2018) 1727-1739. [27] Wei Yang, Shengfu Chen, Gang Cheng, Hana Vaisocherova, Jinli Zhang, Shaoyi Jiang, Hong Xue, Wei Li, Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces, Langmuir. 24(2008) 9211-9214. [28] L. Lei, X. Liu, Y. Li, Y. Cui, Y. Yang, G. Qin, Study on synthesis of poly(GMA)-grafted Fe3O4/SiOX magnetic nanoparticles using atom transfer radical polymerization and their application for lipase immobilization, Mater. Chem. Phys. 125(2011) 866-871. [29] S. Arana-Pena, C. Mendez-Sanchez, N.S. Rios, C. Ortiz, L.R.B. Goncalves, R. FernandezLafuente, New applications of glyoxyl-octyl agarose in lipases co-immobilization:strategies to reuse the most stable lipase, Int. J. Biol. Macromol. 131(2019) 989-997. [30] P. Grochulski, Y. Li, J.D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin, M. Cygler, Insights into interfacial activation from an open structure of Candida rugosa lipase, J. Biol. Chem. 268(1993) 12843-12847. [31] W.-W. Yue, H.-J. Li, T. Xiang, H. Qin, S.-D. Sun, C.-S. Zhao, Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility, J. Membrane Sci. 446(2013) 79-91. [32] X.L. Qianru Jin, Chao Deng, Qian Zhang, Deliang Yi, Xingdong Wang, Yi Tang, Yajun Wang, Silica nanowires with tunable hydrophobicity for lipase immobilization and biocatalytic membrane assmbly, J. Colloid Interf. Sci. 531(2018) 555-563. [33] P. Urrutia, R. Arrieta, L. Alvarez, C. Cardenas, M. Mesa, L. Wilson, Immobilization of lipases in hydrophobic chitosan for selective hydrolysis of fish oil:the impact of support functionalization on lipase activity, selectivity and stability, Int. J. Biol. Macromol. 108(2018) 674-686. [34] E.A. Manoel, J.C. Dos Santos, D.M. Freire, N. Rueda, R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports involves the open form of the enzyme, Enzyme Microb. Tech. 71(2015) 53-57. [35] C.-H. Lee, T.-S. Lin, C.-Y. Mou, Mesoporous materials for encapsulating enzymes, Nano Today 4(2009) 165-179. [36] P. Esmaeilnejad-Ahranjani, M. Kazemeini, G. Singh, A. Arpanaei, Study of molecular conformation and activity-related properties of lipase immobilized onto core-shell structured polyacrylic acid-coated magnetic silica nanocomposite particles, Langmuir. 32(2016) 3242-3252. [37] Y. Yong, Y.-X. Bai, Y.-F. Li, L. Lin, Y.-J. Cui, C.-G. Xia, Characterization of Candida rugosa lipase immobilized onto magnetic microspheres with hydrophilicity, Process Biochem. 43(2008) 1179-1185. [38] Y. Yong, Y. Bai, Y. Li, L. Lin, Y. Cui, C. Xia, Preparation and application of polymergrafted magnetic nanoparticles for lipase immobilization, J. Magn. Magn. Mater. 320(2008) 2350-2355. [39] V.G.u.C. Mateo, B.C.C. Pessela, T. Montes, J.M. Palomo, R. Torres, F.L. opez-Gallego, R. Fern andez-Lafuente1, J.M. Guis an, Advances in the design of new epoxy supports for enzyme immobilization-stabilization (7th International Conference on Protein Stabilization), 35, 20071593-1601. [40] X. Liu, Preparation of porous hollow Fe3O4/P(GMA-DVB-St) microspheres and application for lipase immobilization, Bioprocess Biosyst. Eng. 41(2018) 771-779. [41] R. DiCosimo, J. McAuliffe, A.J. Poulose, G. Bohlmann, Industrial use of immobilized enzymes, Chem. Soc. Rev. 42(2013) 6437-6474. [42] L. Kisley, K.A. Serrano, C.M. Davis, D. Guin, E.A. Murphy, M. Gruebele, D.E. Leckband, Soluble zwitterionic poly(sulfobetaine) destabilizes proteins, Biomacromolecules. 19(2018) 3894-3901. [43] C. Zhang, Y. Liu, Y. Sun, Lipase immobilized to a short alkyl chain-containing zwitterionic polymer grafted on silica nanoparticles:moderate activation and significant increase of thermal stability, Biochem. Eng. J. 146(2019) 124-131. |