[1] J. Su, J. Fu, Q. Wang, C. Silva, A. Cavaco-Paulo, Laccase:A green catalyst for the biosynthesis of poly-phenols, Crit. Rev. Biotechnol. (2017) 1-14. [2] M. De La Torre, R. Martin-Sampedro, U. Fillat, M.E. Eugenio, A. Blanquez, M. Hernandez, M.E. Arias, D. Ibarra, Comparison of the efficiency of bacterial and fungal laccases in delignification and detoxification of steam-pretreated lignocellulosic biomass for bioethanol production, J. Ind. Microbiol. Biotechnol. 44(2017) 1561-1573. [3] A. Kunamneni, F.J. Plou, A. Ballesteros, M. Alcade, Laccases and their applications:A patent review, Recent Pat. Biotechnol. 2(2008) 10-24. [4] V. Madhavi, S.S. Lele Laccase properties and applications, Bioresources 4(4) (2009) 1694-1717. [5] P. Baldrian, Fungal laccases-occurrenceand properties, FEMS Microbiol. Rev. 30(2006) 215-242. [6] R.C. Minussi, G.M. Pastore, N. Duran, Potential applications of laccase in the food industry, Trends Food Sci. Technol. 13(2002) 205-216. [7] F. Xu, W. Shin, S.H. Brown, J.A. Wahleithner, U.M. Sundaram, E.I. Solomon, A study of a series of recombinant fungal laccases in redox potential, substrate specificity, and stability, Biochim. Biophys. Acta 1292(1996) 303-311. [8] M. Alcade, Laccases:Biological functions, molecular structure and industrial applications, Industrial Enzymes:Structure, Function and Applications, Springer 2007, pp. 461-476. [9] M. Alcalde, M. Ferrer, F.J. Plou, A. Ballesteros, Environmental biocatalysis:From remediation with enzymes to novel green processes, Trends Biotechnol. 22(6) (2006) 281-287. [10] M.M. Rodríguez-Delgado, G.S. Alemán-Nava, J. Rodríguez-Delgado, G. Dieck-Assad, S.O. Martínez-Chapa, D. Barceló, R. Parra, Laccase-based biosensors for detection of phenolic compounds, Trends Anal. Chem. 74(2015) 21-45. [11] N. Duran, M.A. Rosa, A. D'Annibale, L. Gianfreda, Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports:A review, Enzym. Microb. Technol. 31(2002) 907-931. [12] S. Ilyas, A. Rehman, Decolorization and detoxification of Synozol red HF-6BN azo dye, by Aspergillus Niger and Nigrospora sp, Iranian J. Environ. Health Sci. Eng. 10(1) (2013) 12. [13] A. Majcherczyk, C. Johannes, A. Huttermann, Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor, Enz. Microb. Technol. 22(5) (1998) 335-341. [14] C. Mousty, L. Vieille, S. Cosnier, Laccase immobilization in redox active layered double hydroxides:A reagentless amperometric biosensor, Biosens. Bioelectron. 22(2007) 1733-1738. [15] B. Viswanath, B. Rajesh, A. Janardhan, A.P. Kumar, G. Narasimha, Fungal Laccases and their applications in bioremediation, Enzyme. Res. 2014(2014) 163242. [16] D. Wesenberg, I. Kyriakides, S.N. Agathos, White-rot fungi and their enzymes for the treatment of industrial dye effluents, Biotechnol. Adv. 22(2003) 161-187. [17] K. Banka, G. Buszewicz, P. Listos, R. Madro, Usefulness of GC-MS method for the determination of DDT, DMDT, and γ-HCH in bees (bodies) for legal purposes, Bull. Vet. Inst. Pulawy 54(2010) 655-659. [18] M. Fernández-Fernández, M. Ángeles Sanromán, D. Moldes, Recent developments and applications of immobilized laccase, Biotechnol. Adv. 31(2013) 1808-1825. [19] R. Sheldon, Enzyme immobilization:The quest for optimum performance, Adv. Synth. Catal. 349(2007) 1289-1307. [20] M. Hartmann, X. Kostrov, Immobilization of enzymes on porous silicas-benefits and challenges, Chem. Soc. Rev. 42(15) (2013) 6277-6289. [21] C.S. Cristiano, C.C.S. Fortes, L. Ana, A.L. Daniel-da-Silva, A.M.R.B. Xavier, A.P.M. Tavares, Optimization of enzyme immobilization on functionalized magnetic nanoparticles for laccase biocatalytic reactions, Chem. Eng. Process. 117(2017) 1-8. [22] T. Xia, C. Liu, J. Hu, C. Guo, Improved performance of immobilized laccase on aminefunctioned magnetic Fe3O4 nanoparticles modified with polyethylenimine, Chem. Eng. J. 295(2016) 201-206. [23] J. Ge, J. Lei, R. N. Zare, protein-inorganic hybrid nanoflowers, Nat. Nanotechnol. 7(2012) 428-432. [24] L. Zhu, L. Gong, Y. Zhang, R. Wang, J. Ge, Z. Liu, R.N. Zare, Rapid detection of phenol using a membrane containing laccase nanoflowers, Chem. Asian J. 8(2013) 2358-2360. [25] K. Banjanac, M. Mihailović, N. Prlainović, M. Stojanović, M. Carević, A. Marinković, D. Bezbradica, Cyanuric chloride functionalized silica nanoparticles for covalent immobilization of lipase, J. Chem. Technol. Biotechnol. 91(2) (2016) 439-448. [26] H.-S. Jung, D.-S. Moon, J.-K. Lee, Quantitative analysis and efficient surface modification of silica nanoparticles, J Nanomaterials 2012(2012) 1-8. [27] S.K. Patel, V.C. Kalia, J.H. Choi, J.R. Haw, I.W. Kim, J.K. Lee, Immobilization of laccase on SiO-nanocarriers improves its stability and reusability, J. Microbiol. Biotechnol. 24(5) (2014) 639-647. [28] M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72(1976) 248-254. [29] R. Kumar, J. Kaur, S. Jain, A. Kumar, Optimization of laccase production from Aspergillus flavus by design of experiment technique:Partial purification and characterization, J. Genet. Eng. Biotechnol. 14(2016) 125-131. [30] L.-L. Kiiskinen, L. Viikari, K. Kruus, Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces, Appl. Microbiol. Biotechnol. 59(2002) 198-204. [31] C. Bernal, A. Illanes, L. Wilson, Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases:Application to lactulose Palmitate synthesis, Langmuir 30(2014) 3557-3566. [32] S. Cao, L. Fang, Z. Zhao, Y. Ge, S. Piletsky, A.P.F. Turner, Hierachically structured hollow silica spheres for high efficiency immobilization of enzymes, Adv. Funct. Mater. 23(17) (2013) 2162-2167. [33] J.C. Cruz, P.H. Pfromm, M.E. Rezac, Immobilization of Candida antarctica lipase B on fumed silica, Process Biochem. 44(2009) 62-69. [34] M. Falahati, A.A. Saboury, L. Ma'mani, A. Shafiee, H.A. Rafieepour, The effect of functionalization of mesoporous silica nanoparticles on the interaction and stability of confined enzyme, Int. J. Biol. Macromol. 50(2012) 1048-1054. [35] E. Ranjbakhsh, A.K. Bordbar, M. Abbasi, A.R. Khosropour, E. Shams, Enhancement of stability and catalytic activity of immobilized lipase on silica-coated modified magnetite nanoparticles, Chem. Eng. J. 179(2012) 272-276. [36] K. Banjanac, M. Carević, M. Ćorović, A. Milivojević, N. Prlainović, A. Marinković, D. Bezbradica, Novel β-galactosidase nanobiocatalyst systems for application in the synthesis of bioactive galactosides, RSC Adv. 6(99) (2016) 97216-97225. [37] A. Dyal, K. Loos, M. Noto, S.W. Chang, C. Spagnoli, K.V.P.M. Shafi, A. Ulman, M. Cowman, R.A. Gross, Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles, J. Am. Chem. Soc. 125(2003) 1684-1685. [38] N. Prlainović, Z. Knežević-Jugović, D. Mijin, D. Bezbradica, Immobilization of lipase from Candida rugosa on Sepabeads®:The effect of lipase oxidation by periodates, Bioprocess Biosyst. Eng. 34(2011) 803-810. [39] L. Fernandez-Arrojo, P. Santos-Moriano, B. Rodriguez-Colinas, A.O. Ballesteros, F.J. Plou, Micro-scale procedure for enzyme immobilization screening and operational stability assays, Biotechnol. Lett. 37(8) (2015) 1593-1600. [40] S.L. Gilani, G.D. Najafpour, A. Moghadamni, A.H. Kamaruddin, Kinetics and isotherm studies of the immobilized lipase on chitosan support, Int J Eng (IJE), Transactions A:Basics 29(10) (2016) 1319-1331. [41] S.Z. Mazlan, S.A. Hanifah, Effects of temperature and pH on immobilized Laccase activity in conjugated methacrylate-acrylate microspheres, Int. J. Polym. Sci. 2017(2017) 1-8. [42] A.P.M. Tavare, C.G. Silva, G. Drazic, A.M.T. Silva, J.M. Loureiro, J.L. Faria, Laccase immobilization over multi-walled carbon nanotubes:Kinetic, thermodynamic and stability studies, J. Colloid Interface Sci. 454(2015) 52-60. [43] R.L. Tseng, F.C. Wub, R.S. Juang, Characteristics and applications of the Lagergren's first-order equation for adsorption kinetics, J, Taiwan Inst. Chem. Eng. 41(2010) 661-669. [44] Y. Li, F. Gao, W. Wei, J.-B. Qu, G.-H. Ma, W.-Q. Zhou, Pore size of macroporous polystyrene microspheres affects lipase immobilization, J. Mol. Catal. B Enzym. 66(2010) 182-189. [45] F. Bellezza, A. Cipiciani, L. Latterini, T. Posati, P. Sassi, Structure and catalytic behavior of myoglobin adsorbed onto Nanosized Hydrotalcites, Langmuir 25(2009) 10918-10924. [46] S.Gao, Y. Wang, T. Wang, G.Luo, Y. Dai, Immobilization of lipase on methyl-modified silica aerogels by physical adsorption, Bioresour. Technol. 100(2009) 996-999. [47] X. Liu, L. Lei, Y. Li, H. Zhu, Y. Cui, H. Hu, Preparation of carriers based on magnetic nanoparticles grafted polymer and immobilization for lipase, Biochem. Eng. J. 56(2011) 142-149. [48] C. Palocci, L. Chronopoulou, I. Venditti, E. Cernia, M. Diociaiuti, I. Fratoddi, M. V. Russo, Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles, Biomacromolecules 8(2007) 3047-3053. [49] K. Ponvel, D.G. Lee, E.J. Woo, I.S. Ahn, C.H. Lee, Immobilization of lipase on surface modified magnetic nanoparticles using alkyl benzenesulfonate, Korean J. Chem. Eng. 26(2009) 127-130. [50] J.M. Saez, A. Alvarez, M.S. Fuentes, M.J. Amoroso, C.S. Benimel, An Overview on Microbial Degradation of Lindane, from Microbe-Induced Degradation of Pesticides:2017191-212. [51] D. Kumar, R. Pannu, Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment:A review, Bioresour. Bioprocess. 5(2018) 29. [52] H. Wang, W. Zhang, J. Zhao, L. Xu, C. Zhou, L. Chang, L. Wang, Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support, Ind. Eng. Chem. Res. 52(2013) 4401-4407. |