[1] C. Miu, X. Tu, J. I.D.Wu, Y. Zhang, Q. Zong, N. Wu, Synthesis of imidacloprid by series reaction, CN Pat., 104672212(2013). [2] N.M. Patel, A. Patel, K. Patel, B. Vyas, N. Nalwaya, Manufacture of imidacloprid useful for controlling sucking insects, India Pat. 21026916(2016). [3] X. Wu, Y. Ma, C. Zhang, Q. Wang, A new synthesis process of acetamiprid, CN Pat., 107353244(2017). [4] X. Hong, K. Liu, Z. Zhang, J. Zhao, Production process of acetamiprid, CN Pat., 104803910(2015). [5] K. Jelich, D. Kaufmann, B. Gallenkamp, R. Lantzsch, Preparation of 2-chloro-5-methyl-pyridine, Germany Pat. 4020053(1991). [6] S. Janardanan, M.I. Papadaki, S.P. Waldram, M.S. Mannan, Toward an inherently safer alternative for operating N-oxidation of alkylpyridines:effect of N -oxide on lutidine-water phase separation, Thermochim. Acta 656(2017) 38-46. [7] S. Youssif, Recent trends in the chemistry of pyridine N-oxides, Arkivoc 2(2001) 28. [8] F.O. Rice, O.M. Reiff, The thermal decomposition of hydrogen peroxide, J. Phys. Chem. 31(1927) 1352-1356. [9] K.F. Jensen, Flow chemistry-microreaction technology comes of age, AICHE J. 63(2017) 858-869. [10] Y. Su, Y. Zhao, F. Jiao, G. Chen, Q. Yuan, The intensification of rapid reactions for multiphase systems in a microchannel reactor by packing microparticles, AIChE J. 57(2011) 1409-1418. [11] Y. Chen, Y. Zhao, M. Han, C. Ye, M. Dang, G. Chen, Safe, efficient and selective synthesis of dinitro herbicides via a multifunctional continuous-flow microreactor:onestep dinitration with nitric acid as agent, Green Chem. 15(2013) 91-94. [12] J. Zhang, K. Wang, X. Lin, Y. Lu, G. Luo, Intensification of fast exothermic reaction by gas agitation in a microchemical system, AIChE J. 60(2014) 2724-2730. [13] C.Y. Zhang, J.S. Zhang, G.S. Luo, Kinetic study and intensification of acetyl Guaiacol nitration with nitric acid-acetic acid system in a microreactor, J. Flow Chem. 6(2016) 309-314. [14] J.M. Sauks, D. Mallik, Y. Lawryshyn, T. Bender, M. Organ, A continuous-flow microwave reactor for conducting high-temperature and high-pressure chemical reactions, Org. Process. Res. Dev. 18(2014) 1310-1314. [15] T. Inoue, K. Ohtaki, S. Murakami, S. Matsumoto, Direct synthesis of hydrogen peroxide based on microreactor technology, Fuel Process. Technol. 108(2013) 8-11. [16] M. Shang, T. Noel, Y. Su, V. Hessel, Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors, AICHE J. 63(2017) 689-697. [17] J.S. Moore, C.D. Smith, K.F. Jensen, Kinetics analysis and automated online screening of aminocarbonylation of aryl halides in flow, React. Chem. Eng. 1(2016) 272-279. [18] J.S. Zhang, K. Wang, Y.C. Lu, G.S. Luo, Characterization and modeling of micromixing performance in micropore dispersion reactors, Chem. Eng. Process. 49(2010) 740-747. [19] R. Antony, M.S.G. Nandagopal, C. Manikrishna, N. Selvaraju, Experimental comparison on efficiency of alkaline hydrolysis reaction in circular microreactors over conventional batch reactor, J. Sci. Ind. Res. 74(2015) 390-394. [20] J.M. Hoffman, M. Ebara, J.J. Lai, A.S. Hoffman, A. Folch, P.S. Stayton, A helical flow, circular microreactor for separating and enriching "smart" polymer-antibody capture reagents, Lab Chip 10(2010) 3130-3138. [21] O. Spalek, J. Balej, I. Paseka, Kinetics of the decomposition of hydrogenperoxide in alkaline-solutions, J. Chem. Soc., Faraday Trans. 1(78) (1982) 2349-2359. [22] J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and scaling up of microchemical systems:a review, Annu. Rev. Chem. Biomol. Eng. 8(2017) 285-305. [23] N. Kockmann, M. Gottsponer, D.M. Roberge, Scale-up concept of single-channel microreactors from process development to industrial production, Chem. Eng. J. 167(2011) 718-726. |