[1] I.B. Obot, N.O. Obi-Egbedi, Adsorption properties and inhibition of mild steel corrosion in sulphuric acid solution by ketoconazole:Experimental and theoretical investigation, Corros. Sci. 52(2010) 198-204. [2] I. Ahamad, R. Prasad, M.A. Quraishi, Inhibition of mild steel corrosion in acid solution by pheniramine drug:Experimental and theoretical study, Corros. Sci. 52(2010) 3033-3041. [3] A. Zarrouk, H. Zarrok, Y. Ramli, M. Bouachrine, B. Hammouti, A. Sahibed-dine, F. Bentiss, Inhibitive properties, adsorption and theoretical study of 3,7-dimethyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one as efficient corrosion inhibitor for carbon steel in hydrochloric acid solution, J. Mol. Liq. 222(2016) 239-252. [4] X. Li, S. Deng, X. Xie, Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution, Corros. Sci. 81(2014) 162-175. [5] J. Cui, R. Shi, Y. Pei, Novel inorganic solid controlled-release inhibitor for Q235-b anticorrosion treatment in 1 M HCl, Appl. Surf. Sci. 416(2017) 213-224. [6] A.M. Al-Sabagh, N.M. Nasser, A.A. Farag, M.A. Migahed, A.M.F. Eissa, T. Mahmoud, Structure effect of some amine derivatives on corrosion inhibition efficiency for carbon steel in acidic media using electrochemical and quantum theory methods, Egypt. J. Pet. 22(2013) 101-116. [7] S.M. Abd El Haleem, S. Abd El Wanees, E.E. Abd El Aal, A. Farouk, Factors affecting the corrosion behaviour of aluminium in acid solutions. I. Nitrogen and/or sulphurcontaining organic compounds as corrosion inhibitors for Al in HCl solutions, Corros. Sci. 68(2013) 1-13. [8] A. Doner, E.A. Şahin, G. Kardaş, O. Serindağ, Investigation of corrosion inhibition effect of 3-[(2-hydroxy-benzylidene)-amino]-2-thioxo-thiazolidin-4-one on corrosion of mild steel in the acidic medium, Corros. Sci. 66(2013) 278-284. [9] D. Daoud, T. Douadi, S. Issaadi, S. Chafaa, Adsorption and corrosion inhibition of new synthesized thiophene Schiff base on mild steel X52 in HCl and H2SO4 solutions, Corros. Sci. 79(2014) 50-58. [10] R. Solmaz, E. Altunbaş, G. Kardaş, Adsorption and corrosion inhibition effect of 2-((5-mercapto-1,3, 4-thiadiazol-2-ylimino)methyl)phenol Schiff base on mild steel, Mater. Chem. Phys. 125(2011) 796-801. [11] A. Kokalj, N. Kovačević, S. Peljhan, M. Finšgar, A. Lesar, I. Milošev, Triazole, benzotriazole, and naphthotriazole as copper corrosion inhibitors:I, Molecular electronic and adsorption properties, ChemPhysChem 12(2011) 3547-3555. [12] F. Bentiss, M. Traisnel, M. Lagrenée, Influence of 2,5-bis(4-dimethylaminophenyl)-1,3,4-thiadiazole on corrosion inhibition of mild steel in acidic media, J. Appl. Electrochem. 31(2001) 41-48. [13] Standard, A.S.T.M, G1-03, Standard practice for preparing, cleaning, and evaluating corrosion test specimens, Annual Book of ASTM Standards 3(2003) 17-25. [14] R. Nabah, F. Benhiba, Y. Ramli, M. Ouakki, M. Cherkaoui, H. Oudda, R. Touir, I. Warad, A. Zarrouk, Corrosion inhibition itudy of 5, 5-diphenylimidazolidine-2, 4-dione for mild mteel corrosion in 1 M HCl solution:Experimental, theoretical computational and Monte Carlo simulations studies, Anal. Bioanal. Electrochem. 10(10) (2018) 1375-1398. [15] M.J. Frisch, et al., Gaussian 09, Revision D. 01, 2009. [16] M. Khattabi, F. Benhiba, S. Tabti, A. Djedouani, A. El Assyry, R. Touzani, I. Warad, H. Oudda, A. Zarrouk, Performance and computational studies of two soluble pyran derivatives as corrosion inhibitors for mild steel in HCl, J. Mol. Struct. 1196(2019) 231-244. [17] L.O. Olasunkanmi, M.M. Kabanda, E.E. Ebenso, Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium:Electrochemical and quantum chemical studies, Phys. E. 76(2016) 109-126. [18] A. Zarrouk, B. Hammouti, A. Dafali, M. Bouachrine, H. Zarrok, S. Boukhris, S.S. AlDeyab, A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid, J. Saudi Chem. Soc. 18(2014) 450-455. [19] R.G. Pearson, Absolute electronegativity and hardness:application to inorganic chemistry, Inorg. Chem. 27(1988) 734-740. [20] V. Sastri, J. Perumareddi, Molecular orbital theoretical studies of some organic corrosion inhibitors, Corrosion 53(1997) 617-622. [21] M. Saraçoğlu, M.I.A. Elusta, S. Kaya, C. Kaya, F. Kandemirli, Int. J. Electrochem. Sci. 13(2018) 8241-8259. [22] R.G. Parr, W. Yang, Density functional-approach to the frontier-electron theory of chemical-reactivity, J. Am. Chem. Soc. 106(1984) 4049-4050. [23] W. Yang, W.J. Mortier, The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines, J. Am. Chem. Soc. 108(1986) 5708-5711. [24] H. Sun, COMPASS:an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds, J. Phys. Chem. B 102(1998) 7338-7364. [25] H.C. Andersen, Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72(1980) 2384-2393. [26] M. Yadav, D. Behera, S. Kumar, R.R. Sinha, Experimental and quantum chemical studies on the corrosion inhibition performance of benzimidazole derivatives for mild steel in HCl, Ind. Eng. Chem. Res. 52(2013) 6318-6328. [27] R. Solmaz, Investigation of corrosion inhibition mechanism and stability of vitamin B1 on mild steel in 0.5 M HCl solution, Corros. Sci. 81(2014) 75-84. [28] L. Guo, S. Zhu, S. Zhang, Q. He, W. Li, Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium, Corros. Sci. 87(2014) 366-375. [29] R. Solmaz, G. Kardaş, B. Yazıcı, M. Erbil, Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1,3,4-thiadiazole on mild steel in hydrochloric acid media colloid, Surf., A 312(2008) 7-17. [30] M. El Azzouzi, A. Aouniti, S. Tighadouin, H. Elmsellem, S. Radi, B. Hammouti, A. El Assyry, F. Bentiss, A. Zarrouk, Some hydrazine derivatires as corrosion inhibitors for mild steel in 1.0M HCl:Weight loss, electrochemichal, SEM and theoretical studies, J. Mol. Liq. 221(2016) 633-641. [31] M. Hegazy, A. Badawi, S. Abd El Rehim, W. Kamel, Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy)ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling, Corros. Sci. 69(2013) 1106122. [32] M. Lebrini, M. Lagrenee, H. Vezin, M. Traisnel, F. Bentiss, Experimental and theoretical study for corrosion inhibition of mild steel in normal hydrochloric acid solution by some new macrocyclic polyether compounds, Corros. Sci. 52(2007) 2254-2269. [33] I. El Ouali, B. Hammouti, A. Aouniti, Y. Ramli, M. Azougagh, E.M. Essassi, M. Bouachrine, Thermodynamic characterisation of steel corrosion in HCl in the presence of 2-phenylthieno (3,2-b) quinoxaline, J. Mater. Envir. Sci. 1(2010) 1-8. [34] M. Rbaa, F. Benhiba, I.B. Obot, H. Oudda, I. Warad, B. Lakhrissi, A. Zarrouk, Two new 8-hydroxyquinoline derivatives as an effi cient corrosion inhibitors for mild steel in hydrochloric acid:Synthesis, electrochemical, surface morphological, UV-visible and theoretical studies, J. Mol. Liq. 276(2019) 120-133. [35] K. Benbouguerra, S. Chafaa, N. Chafai, M. Mehri, O. Moumeni, A. Hellal, Synthesis, spectroscopic characterization and a comparative study of the corrosion inhibitive efficiency of an a-aminophosphonate and Schiff base derivatives:Experimental and theoretical investigations, J. Mol. Struct. 1157(2018) 165-176. [36] X. Wang, H. Yang, F. Wang, An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solution, Corros. Sci. 53(2011) 113-121. [37] M.M. Solomon, S.A. Umoren, In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution, J. Colloid Interface Sci. 462(2016) 29-41. [38] J. Haque, K. Ansari, V. Srivastava, M. Quraishi, I. Obot, Pyrimidine derivatives as novel acidizing corrosion inhibitors for N80 steel useful for petroleum industry:A combined experimental and theoretical approach, J. Ind. Eng. Chem. 49(2017) 176-188. [39] F. Benhiba, Y. ELaoufir, M. Belayachi, H. Zarrok, A. El Assyry, A. Zarrouk, B. Hammouti, E.E. Ebenso, A. Guenbour, S.S. Al Deyab, H. Oudda, Theoretical and experimental studies on the inhibition of 1,1'-(2-phenylquinoxaline 1,4-diyl) diethanone for the corrosion of carbon steel in 1.0 M HCl, J. Der Pharm. Lett. 6(4) (2014) 306-318. [40] H. Tayebi, H. Bourazmi, B. Himmi, A. El Assyry, Y. Ramli, A. Zarrouk, A. Geunbour, B. Hammouti, E.E. Ebenso, An electrochemical and theoretical evaluation of new quinoline derivative as a corrosion inhibitor for carbon steel in HCL solutions, Der Pharm. Lett. 6(6) (2014) 20-34. [41] F. Benhiba, H. Zarrok, A. Elmidaoui, M. El Hezzat, R. Touir, A. Guenbour, A. Zarrouk, S. Boukhris, H. Oudda, Theoretical prediction and experimental study of 2-phenyl-1, 4-dihydroquinoxaline as a novel corrosion inhibitor for carbon steel in 1.0 HCl, J. Mater. Envir. Sci. 6(8) (2015) 2301-2314. [42] A. Kadhum, A. Mohamad, L. Hammed, A. Al-Amiery, Ng. San, A. Musa, Inhibition of mild steel corrosion in hydrochloric acid solution by new coumarin, Materials 7(6) (2014) 4335-4348. [43] J. Haque, K. Ansari, V. Srivastava, M. Quraishi, I. Obot, Pyrimidine derivatives as novel acidizing corrosion inhibitors for N80 steel useful for petroleum industry:A combined experimental and theoretical approach, J. Ind. Eng. Chem. 49(2017) 176-188. [44] A. Popova, E. Sokolova, S. Raicheva, M. Christov, AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives, Corros. Sci. 45(2003) 33-58. [45] L. Vracar, D. Drazic, Adsorption and corrosion inhibitive properties of some organic molecules on iron electrode in sulfuric acid, Corros. Sci. 44(2002) 1669-1680. [46] K. Cherrak, F. Benhiba, N.K. Sebbar, E.M. Essassi, M. Taleb, A. Zarrouk, A. Dafali, Corrosion inhibition of mild steel by new Benzothiazine derivative in a hydrochloric acid solution:Experimental evaluation and theoretical calculations, Chem. Data Collect. 22(2019) 100252. [47] R. Villamil, P. Corio, J. Rubim, S. Agostinho, Sodium dodecylsulfate-benzotriazole synergistic effect as an inhibitor of processes on copper ∣ chloridric acid interfaces, J. Electroanal. Chem. 535(2002) 75-83. [48] M. El Faydy, M. Galai, A. El Assyry, A. Tazouti, R. Touir, B. Lakhrissi, M. Ebn Touhami, A. Zarrouk, Experimental investigation on the corrosion inhibition of carbon steel by 5-(chloromethyl)-8-quinolinol hydrochloride in hydrochloric acid solution, J. Mol. Liq. 219(2016) 396-404. [49] M. Bouklah, B. Hammouti, M. Lagrenee, F. Bentiss, Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium Corros, Sci. 48(2006) 2831-2842. [50] H. Zarrok, S.S. Al-Deyab, A. Zarrouk, R. Salghi, B. Hammouti, H. Oudda, M. Bouachrine, F. Bentiss, Thermodynamic characterisation and density functional theory investigation of 1, 1',5, 5'-Tetramethyl-1H, 1'H-3, 3'-Bipyrazole as corrosion inhibitor of C38 steel corrosion in HCl, Int. J. Electrochem. Sci. 7(2012) 4047-4063. [51] R. Hsissou, F. Benhiba, M. Khudhair, M. Berradi, A. Mahsoune, H. Oudda, A. El Harfi, I.B. Obot, A. Zarrouk, Investigation and comparative study of the quantum molecular descriptors de-rived from the theoretical modeling and Monte Carlo simulation of two new macromolecular polyepoxide architectures TGEEBA and HGEMDA, J. King Saud Univ. Sci. (2020) 667-676. [52] L. Saqalli, M. Galai, F. Benhiba, N. Gharda, N. Habbadi, R. Ghailane, M. Ebn Touhami, Y. Peres-lucchese, A. Souizi, R. Touir, Experimental and theoretical studies of Alizarin as corrosion inhibitor for mild steel in 1.0 M HCl solution, J. Mater. Environ. Sci. 8(7) (2017) 2455-2467. [53] I. Lukovits, E. Kálmán, F. Zucchi, Corrosion inhibitors-Correlation between electronic structure and efficiency, Corrosion 57(2001) 3-8. [54] S.H. Rosline Sebastian Sr., M.I. Attia, M.S. Almutairi, A.A. El-Emam, C.Y. Panicker, C. Van Alsenoy, FT-IR, FT-Raman, molecular structure, first order hyperpolarizability, HOMO and LUMO analysis, MEP and NBO analysis of 3-(adamantan-1-yl)-4-(prop-2-en-1-yl)-1H-1,2,4-triazole-5(4H)-thione, a potential bioactive agent, Spectrochim. Acta, Part A 132(2014) 295-304. [55] C.Y. Panicker, H.T. Varghese, P.S. Manjula, B.K. Sarojini, B. Narayana, J.A. War, S.K. Srivastava, C. Van Alsenoy, A.A. Al-Saadi, FT-IR, HOMO-LUMO, NBO, MEP analysis and molecular docking study of 3-Methyl-4-{(E)-[4-(methylsulfanyl)-benzylidene]amino}1H-1,2,4-triazole-5(4H)-thione, Spectrochim. Acta, Part A 151(2015) 198-207. [56] I. Danaee, M. Gholami, M.R. Avei, M.H. Maddahy, Quantum chemical and experimental investigations on inhibitory behavior of amino-imino tautomeric equilibrium of 2-aminobenzothiazole on steel corrosion in H2SO4 solution, J. Ind. Eng. Chem. 26(2015) 81-94. [57] S.K. Saha, P. Banerjee, A theoretical approach to understand the inhibition mechanism of steel corrosion with two aminobenzonitrile inhibitors, RSC Adv. 5(2015) 71120-71130. [58] F. Bentiss, M. Traisnel, N. Chaibi, B. Mernari, H. Vezin, M. Lagrenée, 2, 5-Bis (nmethoxyphenyl)-1, 3, 4-oxadiazoles used as corrosion inhibitors in acidic media:correlation between inhibition efficiency and chemical structure, Corros. Sci. 44(2002) 2271-2289. [59] S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, P. Banerjee, Novel Schiff-base molecules as efficient corrosion inhibitors for mild steel surface in 1 M HCl medium:experimental and theoretical approach, Phys. Chem. Chem. Phys. 18(2016) 17898-17911. [60] A. Ghames, T. Douadi, S. Issaadi, L. Sibous, K.I. Alaoui, M. Taleb, S. Chafaa, Theoretical and experimental studies of adsorption characteristics of newly synthesized Schiff bases and their evaluation as corrosion inhibitors for mild steel in 1 M HCl, Int. J. Electrochem. Sci. 12(2017) 4867-4897. [61] G.N. Lewis, The ChemicalCatalog Company, Inc., New York, 1923. [62] S.Echihi M.E.Belghiti, A.Mahsoune, Y.Karzazi, A.Aboulmouhajir, A.Dafali, I.Bahadur, Piperine derivatives as green corrosion inhibitors on iron surface; DFT, Monte Carlo dynamics study and complexation modes, J. Mol. Liq. 261(2018) 62-75. [63] M.M. Kabanda, I.B. Obot, E.E. Ebenso, Computational study of some amino acid derivatives as potential corrosion inhibitors for different metal surfaces and in different media, Int. J. Electrochem. Sci. 8(2013) 10839-10850. [64] C. Verma, Lukman O. Olasunkanmi, I.B. Obot, Eno E. Ebenso, M.A. Quraishi, 2,4-Diamino-5-(phenylthio)-5H-chromeno[2,3-b] pyridine-3-carbonitriles as green and effective corrosion inhibitors:gravimetric, electrochemical, surface morphology and theoretical studies, RSC Adv. 6(2016) 53933-53948. [65] M. El Faydy, F. Benhiba, B. Lakhrissi, M. Ebn Touhami, I. Warad, F. Bentiss, A. Zarrouk, The inhibitive impact of both kinds of 5-isothiocyanatomethyl-8-hydroxyquinoline derivatives on the corrosion of carbon steel in acidic electrolyte, J. Mol. Liq. 295(2019) 111629. [66] I.M. Sokolov, J. Klafter, From difusion to anomalous diffusion:A century after Einstein's Brownian motion, Chaos 15(2005) 26103. [67] P. Singh, M.A. Quraishi, S.L. Gupta, A. Dandia, Investigation of the corrosion inhibition effect of 3-methyl-6-oxo-4-(thiophen-2-yl)-4,5,6,7-tetrahydro-2H-pyrazolo[3,4-b]pyridine-5-carbonitrile (TPP) on mild steel in hydrochloric acid, J. Taibah Univ. Sci. 10(2016) 139-147. [68] N. Chaubey, V.K. Savita, M.A. Quraishi Singh, Corrosion inhibition performance of different bark extracts on aluminium in alkaline solution, J. Assoc. Arab Univ. Basic Appl. Sci. 22(2017) 38-44. |