Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (4): 1062-1068.doi: 10.1016/j.cjche.2019.12.018
• Separation Science and Engineering • Previous Articles Next Articles
Gaofei Chen1, Yaxiong An2, Yuanhui Shen2, Yayan Wang2, Zhongli Tang2, Bo Lu3, Donghui Zhang2
Received:
2019-09-29
Revised:
2019-12-17
Online:
2020-04-28
Published:
2020-07-27
Contact:
Donghui Zhang
E-mail:donghuizhang@tju.edu.cn
Supported by:
Gaofei Chen, Yaxiong An, Yuanhui Shen, Yayan Wang, Zhongli Tang, Bo Lu, Donghui Zhang. Effect of pore size on CH4/N2 separation using activated carbon[J]. Chinese Journal of Chemical Engineering, 2020, 28(4): 1062-1068.
[1] R.M. Flores, Coalbed methane:From hazard to resource, Int. J. Coal Geol. 35(1998) 3-26. [2] J.L. Clayton, Geochemistry of coalbed gas-A review, Int. J. Coal Geol. 35(1998) 159-173. [3] R.M. Bustin, C.R. Clarkson, Geological controls on coalbed methane reservoir capacity and gas content, Int. J. Coal Geol. 38(1998) 3-26. [4] M. Cecopierigomez, J. Palaciosalquisira, J. Dominguez, On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes, J Membrane Sci 293(1-2) (2007) 53-65. [5] X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading, RSC Adv. 5(31) (2015) 24399-24448. [6] K.A. Lokhandwala, I. Pinnau, Z. He, K.D. Amo, A.R. Dacosta, J.G. Wijmans, R.W. Baker, Membrane separation of nitrogen from natural gas:A case study from membrane synthesis to commercial deployment, J Membrane Sci 346(2) (2010) 270-279. [7] H. Yang, C. Yin, B. Jiang, D. Zhang, Optimization and analysis of a VPSA process for N2/CH4 separation, Sep. Purif. Technol. 134(2014) 232-240. [8] W. Sun, Y. Shen, D. Zhang, H. Yang, H. Ma, A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances, Ind. Eng. Chem. Res. 54(30) (2015) 7489-7501. [9] Y. Zhou, Q. Fu, Y. Shen, W. Sun, D. Zhang, D. Li, H. Yan, Upgrade of low-concentration oxygen-bearing coal bed methane by a vacuum pressure swing adsorption process:performance study and safety analysis, Enger & fuels 30(2) (2016) 1496-1509. [10] A. Abdullah, I. Idris, I.K. Shamsudin, M.R. Othman, Methane enrichment from high carbon dioxide content natural gas by pressure swing adsorption, J Nat Gas Sci Eng 69(2019)102929. [11] M. Spitoni, M. Pierantozzi, G. Comodi, F. Polonara, A. Arteconi, Theoretical evaluation and optimization of a cryogenic technology for carbon dioxide separation and methane liquefaction from biogas, J Nat Gas Sci Eng 62(2019) 132-143. [12] D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure swing adsorption, VCH Publishers, Inc., America, 1994. [13] B. Yuan, X. Wu, Y. Chen, J. Huang, H. Luo, S. Deng, Adsorption of CO2, CH4 and N2 on ordered mesoporous carbon:Approach for greenhouse gases capture and biogas upgrading, Environ Sci Technol 47(10) (2013) 5474-5480. [14] H. Yi, F. Li, P. Ning, X. Tang, J. Peng, Y. Li, H. Deng, Adsorption separation of CO2, CH4 and N2 on microwave activated carbon, Chem. Eng. J. 215-216(2013) 635-642. [15] Z. Yang, D. Wang, Z. Meng, Y. Li, Adsorption separation of CH4/N2 on modified coalbased carbon molecular sieve, Sep. Purif. Technol. 218(2019) 130-137. [16] D.D. Do, H.D. Do, Adsorption of supercritical fluids in non-porous and porous carbons:Analysis of adsorbed phase volume and density, Carbon 41(9) (2003) 1777-1791. [17] G.P. Lithoxoos, A. Labropoulos, L.D. Peristeras, N. Kanellopoulos, J. Samios, I.G. Economou, Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes:A combined experimental and Monte Carlo molecular simulation study, J. Supercrit. Fluids 55(2) (2010) 510-523. [18] Q. Fu, H. Tanaka, M.T. Miyahara, Y. Qin, Y. Shen, D. Zhang, CHF3-CHClF2 binary competitive adsorption equilibria in graphitic slit pores:Monte Carlo simulations and breakthrough curve experiments, Ind. Eng. Chem. Res. 57(18) (2018) 6440-6450. [19] B. Zhang, J. Kang, T. Kang, Monte Carlo simulations of methane adsorption on kaolinite as a function of pore size, J Nat Gas Sci Eng 49(2018) 410-416. [20] Q. Wang, L. Huang, Molecular insight into competitive adsorption of methane and carbon dioxide in montmorillonite:Effect of clay structure and water content, Fuel 239(2019) 32-43. [21] B. Demir, M.G. Ahunbay, CO2/CH4 separation in ion-exchanged zeolite-like metal organic frameworks with sodalite topology (sod-ZMOFs), J. Phys. Chem. C 117(30) (2013) 15647-15658. [22] Y. An, Q. Fu, D. Zhang, Y. Wang, Z. Tang, Performance evaluation of activated carbon with different pore sizes and functional groups for VOC adsorption by molecular simulation, Chemosphere 227(2019) 9-16. [23] Y. Liu, J. Wilcox, Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons, Environ Sci Technol 46(3) (2012) 1940-1947. [24] A.V. Shevade, S. Jiang, K.E. Gubbins, Molecular simulation study of water-methanol mixtures in activated carbon pores, J. Chem. Phys. 113(16) (2000) 6933-6942. [25] B. Delley, Fast calculation of electrostatics in crystals and large molecules, J. Phys. Chem. 100(15) (1996) 6107-6110. [26] B. Delley, DMol3 DFT studies:From molecules and molecular environments to surfaces and solids, Comp. Mater. Sci. 17(2-4) (2000) 122-126. [27] D. Lim, A.S. Negreira, J. Wilcox, DFT studies on the interaction of defective graphene-supported Fe and Al nanoparticles, J. Phys. Chem. C 115(18) (2011) 8961-8970. [28] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18) (1996) 3865-3868. [29] B. Wang, J. Nisar, R. Ahuja, Molecular simulation for gas adsorption at NiO (100) surface, Acs Appl. Mater. Inter. 4(10) (2012) 5691-5697. [30] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurateab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15) (2010), 154104. [31] H. Sun, P. Ren, J.R. Fried, The COMPASS force field:Parameterization and validation for phosphazenes, Comput. Theor. Polym. Sci. 8(1-2) (1998) 229-246. [32] H. Sun, COMPASS:An ab initio force-field optimized for condensed-phase ApplicationssOverview with details on alkane and benzene compounds, J. Phys. Chem. B 102(1998) 7338-7364. [33] S.W. Bunte, H. Sun, Molecular modeling of energetic materials:The parameterization and validation of nitrate esters in the COMPASS force field, J. Phys. Chem. B 104(11) (2000) 2477-2489. [34] A. Gupta, S. Chempath, M.J. Sanborn, L.A. Clark, R.Q. Snurr, Object-oriented programming paradigms for molecular modeling, Mol. Simulat. 29(1) (2003) 29-46. [35] D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, 1996. [36] R. Babarao, J. Jiang, Diffusion and separation of CO2 and CH4 in Silicalite, C168 Schwarzite, and IRMOF-1:A comparative study from molecular dynamics simulation, Langmuir 24(10) (2008) 5474-5484. [37] S. Keskin, J. Liu, R.B. Rankin, J.K. Johnson, D.S. Sholl, Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials, Ind. Eng. Chem. Res. 48(5) (2009) 2355-2371. [38] D. Dubbeldam, S. Calero, D.E. Ellis, R.Q. Snurr, RASPA:Molecular simulation software for adsorption and diffusion in flexible nanoporous materials, Mol. Simulat. 42(2) (2016) 81-101. [39] P.A. Gauden, A.P. Terzyk, S. Furmaniak, J. Włoch, P. Kowalczyk, W. Zieliński, MD simulation of organics adsorption from aqueous solution in carbon slit-like pores. Foundations of the pore blocking effect, Journal of Physics. Condensed Matter:An Institute of Physics Journal 26(5) (2014), 55008. [40] Y. Park, D. Moon, Y. Kim, H. Ahn, C. Lee, Adsorption isotherms of CO2, CO, N2, CH4, Ar and H2 on activated carbon and zeolite LiX up to 1.0 MPa, Adsorption 20(4) (2014) 631-647. [41] D. Do Duong, Absorption Analysis Equilibria and Kinetics, Imperial College Press, London, 1998. [42] R. Reich, W.T. Ziegler, K.A. Rogers, Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres, Industrial & Engineering Chemistry Process Design and Development 19(3) (1980) 336-344. |
[1] | Hojatollah Moradi, Hedayat Azizpour, Hossein Bahmanyar, Mohammad Emamian. Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 70-76. |
[2] | Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9. |
[3] | Puxu Liu, Yong Wang, Yang Chen, Xiaoqing Wang, Jiangfeng Yang, Libo Li, Jinping Li. Stable titanium metal-organic framework with strong binding affinity for ethane removal [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 35-41. |
[4] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
[5] | Zenan Wang, Xin Zheng, Yan Wang, Heng Lin, Hui Zhang. Evaluation of phenanthrene removal from soil washing effluent by activated carbon adsorption using response surface methodology [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 399-405. |
[6] | Yumeng Zhang, Yingying Zhang, Xueling Pan, Yao Qin, Jiawei Deng, Shanshan Wang, Qingwei Gao, Yudan Zhu, Zhuhong Yang, Xiaohua Lu. Molecular insights on Ca2+/Na+ separation via graphene-based nanopores: The role of electrostatic interactions to ionic dehydration [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 220-229. |
[7] | Zilong Liu, Ge Zhao, Xiao Zhang, Lei Gao, Junqing Chen, Weichao Sun, Guanggang Zhou, Guiwu Lu. Superior performance porous carbon nitride nanosheets for helium separation from natural gas: Insights from MD and DFT simulations [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 46-53. |
[8] | Wende Tian, Haoran Zhang, Zhe Cui, Xiude Hu. Mechanism analysis and simulation of methyl methacrylate production coupled chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 184-196. |
[9] | Xia Chen, Yan Wang, Lianying Wu, Weitao Zhang, Yangdong Hu. Testing and validation of a self-diffusion coefficient model based on molecular dynamics simulations [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 138-145. |
[10] | Mingming Zhai, Tomohisa Yoshioka, Jianhua Yang, Jinqu Wang, Dinglin Zhang, Jinming Lu, Yan Zhang. Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 104-111. |
[11] | Weichen Zhu, Yuxuan He, Minman Tong, Xiaoyong Lai, Shijia Liang, Xu Wang, Yanjuan Li, Xiao Yan. Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 118-124. |
[12] | Xingang Li, Chuanrui Pang, Hong Li, Xin Gao. Microwave energy inductive fluidized metal particles discharge behavior and its potential utilization in reaction intensification [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 256-267. |
[13] | Xinlong Yan, Yanfang Li, Xiaoyan Hu, Rui Feng, Min Zhou, Dezhi Han. Enhanced adsorption of phenol from aqueous solution by carbonized trace ZIF-8-decorated activated carbon pellets [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 279-285. |
[14] | Jiahao Cui, Shejiang Liu, Hua Xue, Xianqin Wang, Ziquan Hao, Rui Liu, Wei Shang, Dan Zhao, Hui Ding. Catalytic ozonation of volatile organic compounds (ethyl acetate) at normal temperature [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 159-167. |
[15] | Bo Lu, Yuanhui Shen, Zhongli Tang, Donghui Zhang, Gaofei Chen. Vacuum pressure swing adsorption process for coalbed methane enrichment [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 264-280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||