[1] R.M. Flores, Coalbed methane:From hazard to resource, Int. J. Coal Geol. 35(1998) 3-26. [2] J.L. Clayton, Geochemistry of coalbed gas-A review, Int. J. Coal Geol. 35(1998) 159-173. [3] R.M. Bustin, C.R. Clarkson, Geological controls on coalbed methane reservoir capacity and gas content, Int. J. Coal Geol. 38(1998) 3-26. [4] M. Cecopierigomez, J. Palaciosalquisira, J. Dominguez, On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes, J Membrane Sci 293(1-2) (2007) 53-65. [5] X.Y. Chen, H. Vinh-Thang, A.A. Ramirez, D. Rodrigue, S. Kaliaguine, Membrane gas separation technologies for biogas upgrading, RSC Adv. 5(31) (2015) 24399-24448. [6] K.A. Lokhandwala, I. Pinnau, Z. He, K.D. Amo, A.R. Dacosta, J.G. Wijmans, R.W. Baker, Membrane separation of nitrogen from natural gas:A case study from membrane synthesis to commercial deployment, J Membrane Sci 346(2) (2010) 270-279. [7] H. Yang, C. Yin, B. Jiang, D. Zhang, Optimization and analysis of a VPSA process for N2/CH4 separation, Sep. Purif. Technol. 134(2014) 232-240. [8] W. Sun, Y. Shen, D. Zhang, H. Yang, H. Ma, A systematic simulation and proposed optimization of the pressure swing adsorption process for N2/CH4 separation under external disturbances, Ind. Eng. Chem. Res. 54(30) (2015) 7489-7501. [9] Y. Zhou, Q. Fu, Y. Shen, W. Sun, D. Zhang, D. Li, H. Yan, Upgrade of low-concentration oxygen-bearing coal bed methane by a vacuum pressure swing adsorption process:performance study and safety analysis, Enger & fuels 30(2) (2016) 1496-1509. [10] A. Abdullah, I. Idris, I.K. Shamsudin, M.R. Othman, Methane enrichment from high carbon dioxide content natural gas by pressure swing adsorption, J Nat Gas Sci Eng 69(2019)102929. [11] M. Spitoni, M. Pierantozzi, G. Comodi, F. Polonara, A. Arteconi, Theoretical evaluation and optimization of a cryogenic technology for carbon dioxide separation and methane liquefaction from biogas, J Nat Gas Sci Eng 62(2019) 132-143. [12] D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure swing adsorption, VCH Publishers, Inc., America, 1994. [13] B. Yuan, X. Wu, Y. Chen, J. Huang, H. Luo, S. Deng, Adsorption of CO2, CH4 and N2 on ordered mesoporous carbon:Approach for greenhouse gases capture and biogas upgrading, Environ Sci Technol 47(10) (2013) 5474-5480. [14] H. Yi, F. Li, P. Ning, X. Tang, J. Peng, Y. Li, H. Deng, Adsorption separation of CO2, CH4 and N2 on microwave activated carbon, Chem. Eng. J. 215-216(2013) 635-642. [15] Z. Yang, D. Wang, Z. Meng, Y. Li, Adsorption separation of CH4/N2 on modified coalbased carbon molecular sieve, Sep. Purif. Technol. 218(2019) 130-137. [16] D.D. Do, H.D. Do, Adsorption of supercritical fluids in non-porous and porous carbons:Analysis of adsorbed phase volume and density, Carbon 41(9) (2003) 1777-1791. [17] G.P. Lithoxoos, A. Labropoulos, L.D. Peristeras, N. Kanellopoulos, J. Samios, I.G. Economou, Adsorption of N2, CH4, CO and CO2 gases in single walled carbon nanotubes:A combined experimental and Monte Carlo molecular simulation study, J. Supercrit. Fluids 55(2) (2010) 510-523. [18] Q. Fu, H. Tanaka, M.T. Miyahara, Y. Qin, Y. Shen, D. Zhang, CHF3-CHClF2 binary competitive adsorption equilibria in graphitic slit pores:Monte Carlo simulations and breakthrough curve experiments, Ind. Eng. Chem. Res. 57(18) (2018) 6440-6450. [19] B. Zhang, J. Kang, T. Kang, Monte Carlo simulations of methane adsorption on kaolinite as a function of pore size, J Nat Gas Sci Eng 49(2018) 410-416. [20] Q. Wang, L. Huang, Molecular insight into competitive adsorption of methane and carbon dioxide in montmorillonite:Effect of clay structure and water content, Fuel 239(2019) 32-43. [21] B. Demir, M.G. Ahunbay, CO2/CH4 separation in ion-exchanged zeolite-like metal organic frameworks with sodalite topology (sod-ZMOFs), J. Phys. Chem. C 117(30) (2013) 15647-15658. [22] Y. An, Q. Fu, D. Zhang, Y. Wang, Z. Tang, Performance evaluation of activated carbon with different pore sizes and functional groups for VOC adsorption by molecular simulation, Chemosphere 227(2019) 9-16. [23] Y. Liu, J. Wilcox, Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons, Environ Sci Technol 46(3) (2012) 1940-1947. [24] A.V. Shevade, S. Jiang, K.E. Gubbins, Molecular simulation study of water-methanol mixtures in activated carbon pores, J. Chem. Phys. 113(16) (2000) 6933-6942. [25] B. Delley, Fast calculation of electrostatics in crystals and large molecules, J. Phys. Chem. 100(15) (1996) 6107-6110. [26] B. Delley, DMol3 DFT studies:From molecules and molecular environments to surfaces and solids, Comp. Mater. Sci. 17(2-4) (2000) 122-126. [27] D. Lim, A.S. Negreira, J. Wilcox, DFT studies on the interaction of defective graphene-supported Fe and Al nanoparticles, J. Phys. Chem. C 115(18) (2011) 8961-8970. [28] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18) (1996) 3865-3868. [29] B. Wang, J. Nisar, R. Ahuja, Molecular simulation for gas adsorption at NiO (100) surface, Acs Appl. Mater. Inter. 4(10) (2012) 5691-5697. [30] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurateab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132(15) (2010), 154104. [31] H. Sun, P. Ren, J.R. Fried, The COMPASS force field:Parameterization and validation for phosphazenes, Comput. Theor. Polym. Sci. 8(1-2) (1998) 229-246. [32] H. Sun, COMPASS:An ab initio force-field optimized for condensed-phase ApplicationssOverview with details on alkane and benzene compounds, J. Phys. Chem. B 102(1998) 7338-7364. [33] S.W. Bunte, H. Sun, Molecular modeling of energetic materials:The parameterization and validation of nitrate esters in the COMPASS force field, J. Phys. Chem. B 104(11) (2000) 2477-2489. [34] A. Gupta, S. Chempath, M.J. Sanborn, L.A. Clark, R.Q. Snurr, Object-oriented programming paradigms for molecular modeling, Mol. Simulat. 29(1) (2003) 29-46. [35] D. Frenkel, B. Smit, Understanding Molecular Simulation from Algorithms to Applications, Academic Press, 1996. [36] R. Babarao, J. Jiang, Diffusion and separation of CO2 and CH4 in Silicalite, C168 Schwarzite, and IRMOF-1:A comparative study from molecular dynamics simulation, Langmuir 24(10) (2008) 5474-5484. [37] S. Keskin, J. Liu, R.B. Rankin, J.K. Johnson, D.S. Sholl, Progress, opportunities, and challenges for applying atomically detailed modeling to molecular adsorption and transport in metal-organic framework materials, Ind. Eng. Chem. Res. 48(5) (2009) 2355-2371. [38] D. Dubbeldam, S. Calero, D.E. Ellis, R.Q. Snurr, RASPA:Molecular simulation software for adsorption and diffusion in flexible nanoporous materials, Mol. Simulat. 42(2) (2016) 81-101. [39] P.A. Gauden, A.P. Terzyk, S. Furmaniak, J. Włoch, P. Kowalczyk, W. Zieliński, MD simulation of organics adsorption from aqueous solution in carbon slit-like pores. Foundations of the pore blocking effect, Journal of Physics. Condensed Matter:An Institute of Physics Journal 26(5) (2014), 55008. [40] Y. Park, D. Moon, Y. Kim, H. Ahn, C. Lee, Adsorption isotherms of CO2, CO, N2, CH4, Ar and H2 on activated carbon and zeolite LiX up to 1.0 MPa, Adsorption 20(4) (2014) 631-647. [41] D. Do Duong, Absorption Analysis Equilibria and Kinetics, Imperial College Press, London, 1998. [42] R. Reich, W.T. Ziegler, K.A. Rogers, Adsorption of methane, ethane, and ethylene gases and their binary and ternary mixtures and carbon dioxide on activated carbon at 212-301 K and pressures to 35 atmospheres, Industrial & Engineering Chemistry Process Design and Development 19(3) (1980) 336-344. |