[1] S. Salameh, J. Gomez-Hernandez, A. Goulas, H. Van Bui, J.R. van Ommen, Advances in scalable gas-phase manufacturing and processing of nanostructured solids:A review, Particuology. 30(2017) 15-39. [2] H. Mo, B. Xu, C. Luo, T. Zhou, J. Kong, Aggregation and fragmentation of agglomerates in a fluidized bed of mixed nanoparticles by adding FCC coarse particles, Chinese J. Chem. Eng. 26(2018) 148-153. [3] J.M. Valverde, M.A.S. Quintanilla, A. Castellanos, D. Lepek, J. Quevedo, R.N. Dave, R. Pfeffer, Fluidization of fine and ultrafine particles using nitrogen and neon as fluidizing gases, AIChE J. 54(2008) 86-103. [4] X. Zhu, Q. Zhang, Y. Wang, F. Wei, Review on the nanoparticle fluidization science and technology, Chin. J. Chem. Eng. 24(2016) 9-22. [5] A. Fabre, T. Steur, W.G. Bouwman, M.T. Kreutzer, O.J.R. Van, Characterization of the stratified morphology of nanoparticle agglomerates, J. Phys. Chem. C 120(2016) 20446-20453. [6] S. Wang, H. Liu, C. Yang, Structure and drag characteristics of fluidized nanoparticle agglomerates at the bottom of the bed, Ind. Eng. Chem. Res. 58(2019) 19693-19701. [7] G. Neale, N. Epstein, W. Nader, Creeping flow relative to permeable spheres, Chem. Eng. Sci. 28(1973) 1865-1874. [8] D.N. Sutherland, C.T. Tan, Sedimentation of porous sphere, Chem. Eng. Sci. 25(1973) 1948-1950. [9] A.S. Kim, R. Yuan, Hydrodynamics of an ideal aggregate with quadratically increasing permeability, J. Colloid Interface Sci. 285(2005) 627-633. [10] M. Vanni, Creeping flow over spherical permeable aggregates, Chem. Eng. Sci. 55(2000) 685-698. [11] D. Woodfield, G. Bickert, An improved permeability model for fractal aggregates settling in creeping flow, Water Res. 35(2001) 3801-3806. [12] G.P.F.M. Ooms, H.L. Beckers, Frictional force exerted by a flowing fluid on a permeable particle with particular reference to polymer coils, J. Chem. Phys. 53(1970) 4123-4130. [13] S. Veerapaneni, M.R. Wiesner, Hydrodynamics of fractal aggregates with radially varying permeability, J. Colloid Interface Sci. 177(1996) 45-57. [14] R.M. Wu, D.J. Lee, T.D. Waite, J. Guan, Multilevel structure of sludge flocs, J. Colloid Interface Sci. 252(2002) 383-392. [15] R.M. Wu, D.J. Lee, Hydrodynamic drag force exerted on a moving floc and its implication to free-settling tests, Water Res. 32(1998) 760-768. [16] H.Y. Chung, R.M. Wu, D.J. Lee, Hydrodynamic drag force on porous sphere(s) moving in a Newtonian fluid:Two case studies, J Taiwan Inst Chem E. 101(2019) 8-14. [17] J.P. Hsu, Y.H. Hsieh, Drag force on a floc in a flow field:Two-layer model, Chem. Eng. Sci. 57(2002) 2627-2633. [18] C.H. Nam, R. Pfeffer, R.N. Dave, S. Sundaresan, Aerated vibrofluidization of silica nanoparticles, AIChE J. 50(2004) 1776-1785. [19] X.S. Wang, V. Palero, J. Soria, M.J. Rhodesa, Laser-based planar imaging of nano-particle fluidization:Part II-Mechanistic analysis of nanoparticle aggregation, Chem. Eng. Sci. 61(2006) 8040-8049. [20] L. de Martín, A. Fabre, O.J.R. Van, The fractal scaling of fluidized nanoparticle agglomerates, Chem. Eng. Sci. 112(2014) 79-86. [21] P. Ammendola, R. Chirone, F. Raganati, Fluidization of binary mixtures of nanoparticles under the effect of acoustic fields, Adv. Powder Technol. 22(2011) 174-183. [22] S. Bhattacharyya, S. Dhinakaran, A. Khalili, Fluid motion around and through a porous cylinder, Chem. Eng. Sci. 61(2006) 4451-4461. [23] A.K. Jain, S. Basu, Flow past a porous permeable sphere:Hydrodynamics and heattransfer studies, Ind. Eng. Chem. Res. 51(2011) 2170-2178. [24] Y. Wang, G.S. Gu, F. Wei, J. Wu, Fluidization and agglomerate structure of SiO2 nanoparticles, Powder Technol. 124(2002) 152-159. [25] L. de Martín, W.G. Bouwman, O.J.R. Van, Multidimensional nature of fluidized nanoparticle agglomerates, Langmuir. 30(2014) 12696-12702. [26] C. Zhu, Q. Yu, R.N. Dave, R. Pfeffer, Gas fluidization characteristics of nanoparticle agglomerates, AIChE J. 51(2005) 426-439. [27] S.M. Yang, W.H. Hong, Motions of a porous particle in stokes flow:Part 1. Unbounded single-fluid domain problem, Korean J. Chem. Eng. 5(1988) 23-34. [28] P.D. Noymer, L.R. Glicksman, A. Devendran, Drag on a permeable cylinder in steady flow at moderate Reynolds numbers, Chem. Eng. Sci. 53(1998) 2859-2869. [29] T.A. Johnson, V.C. Patel, Flow past a sphere up to a Reynolds number of 300, J. Fluid Mech. 378(1999) 19-70. [30] P. Brown, D.F. Lawler, Sphere drag and settling velocity revisited, J. Environ. Eng. 129(2003) 222-231. [31] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978. [32] J.N. Tilton, Fluid and particle mechanics, Perry's Chemical Engineering Hand Book, 7th ed.McGraw-Hill Companies, Inc., New York, 1997. [33] R. Barati, A.S. Neyshabouri, G. Ahmadi, Development of empirical models with high accuracy for estimation of drag coefficient of flow around a smooth sphere:An evolutionary approach, Powder Technol. 257(2014) 11-19. [34] K. Nandakumar, J.H. Masliyah, Laminar flow past a permeable sphere, Can. J. Chem. Eng. 60(1982) 202-211. [35] P. Yu, Y. Zeng, T.S. Lee, X.B. Chen, H.T. Low, Numerical simulation on steady flow around and through a porous sphere, Int. J. Heat Fluid Flow. 36(2012) 142-152. [36] D.S. Dandy, L.G. Leal, Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds-numbers, J. Fluid Mech. 208(1989) 161-192. [37] J.H. Masliyah, M. Polikar, Terminal velocity of porous spheres, Can. J. Chem. Eng. 58(1980) 299-302. [38] C.P. Johnson, X. Li, B.E. Logan, Settling velocities of fractal aggregates, Environ. Sci. Technol. 30(1996) 1911-1918. |