[1] J.Y. Hu, J. Zhou, N. Wang, Y. Pan, Numerical study of buoyancy's effect on flow and heat transfer of kerosene in a tiny horizontal square tube at supercritical pressure, Appl. Therm. Eng. 141(2018) 1070-1079. [2] Y. Zhao, Y. Wang, C. Liang, Q.Y. Zhang, X.Y. Li, Heat transfer analysis of n-decane with variable heat flux distributions in a mini-channel, Appl. Therm. Eng. 144(5) (2018) 695-701. [3] K.K. Xu, H. Meng, Modeling and simulation of supercritical-pressure turbulent heat transfer of aviation kerosene with detailed pyrolytic chemical reactions, Energy & Fuel 29(2015) 4137-4149. [4] K.K. Xu, H. Meng, Numerical study of fluid flows and heat transfer of aviation kerosene with consideration of fuel pyrolysis and surface coking at supercritical pressures, Int. J. Heat Mass Transf. 95(2016) 806-814. [5] G.Z. Zhao, W.Y. Song, R.L. Zhang, Effect of pressure on thermal cracking of China RP-3 aviation kerosene under supercritical conditions, Int. J. Heat Mass Transf. 84(2015) 625-632. [6] X.F. Li, X.L. Huai, J. Cai, F.Q. Zhong, X.J. Fan, Z.X. Guo, Convective heat transfer characteristics of China RP-3 aviation kerosene at supercritical pressure, Appl. Therm. Eng. 31(14-15) (2011) 2360-2366. [7] X.F. Li, F.Q. Zhong, X.J. Fan, X.L. Huai, J. Cai, Study of turbulent heat transfer of aviation kerosene flows in a curved pipe at supercritical pressure, Appl. Therm. Eng. 30(13) (2010) 1845-1851. [8] H. Pan, Q.C. Bi, Z.H. Liu, S. Feng, F. Feng, Experimental investigation on thermoacoustic instability and heat transfer of supercritical endothermic hydrocarbon fuel in a mini tube, Exp. Thermal Fluid Sci. 97(2018) 109-118. [9] W. Li, D. Huang, G.Q. Xu, Z. Tao, Z. Wu, H.T. Zhu, Heat transfer to aviation kerosene flowing upward in smooth tubes at supercritical pressures, Int. J. Heat Mass Transf. 85(2015) 1084-1094. [10] C.B. Zhang, G.Q. Xu, L. Gao, Z. Tao, H.W. Deng, K. Zhu, Experimental investigation on heat transfer of a specific fuel (RP-3) flows though downward tubes at supercritical pressure, J. Supercrit. Fluids 72(2012) 90-99. [11] Y.C. Fu, H.R. Huang, J. Wen, G.Q. Xu, W. Zhao, Experimental investigation on convective heat transfer of supercritical RP-3 in vertical miniature tubes with various diameters, Int. J. Heat Mass Transf. 112(2017) 814-824. [12] B. Liu, Y.H. Zhu, J.J. Yan, Y.T. Lei, B. Zhang, P.X. Jiang, Experimental investigation of convective heat transfer of n-decane at supercritical pressures in small vertical tubes, Int. J. Heat Mass Transf. 91(2015) 734-746. [13] G.X. Dang, F.Q. Zhong, L.H. Chen, X.Y. Chang, Numerical investigation on flow and convective heat transfer of aviation kerosene at supercritical conditions, SCIENCE CHINA Technol. Sci. 56(2) (2013) 416-422. [14] G.X. Dang, F.Q. Zhong, Y.J. Zhang, X.Y. Zhang, Numerical study of heat transfer deterioration of turbulent supercritical kerosene flow in heated circular tube, Int. J. Heat Mass Transf. 85(2015) 1003-1011. [15] Y.H. Wang, S.F. Li, M. Dong, Numerical study on heat transfer deterioration of supercritical n-decane in horizontal circular tubes, Energies 7(11) (2014) 7535-7554. [16] D. Huang, W. Li, Heat transfer deterioration of aviation kerosene flowing in mini tubes at supercritical pressure, Int. J. Heat Mass Transf. 111(2017) 266-278. [17] H. Pu, S.F. Li, S. Jiao, M. Dong, Y. Shang, Numerical investigation on convective heat transfer to aviation kerosene flowing in vertical tubes at supercritical pressures, Int. J. Heat Mass Transf. 118(2018) 857-871. [18] Z.G. Gao, J.H. Bai, Numerical analysis on nonuniform heat transfer of supercritical pressure water in horizontal circular tube, Appl. Therm. Eng. 120(25) (2017) 10-18. [19] X.L. Lei, H.X. Li, S.Q. Yu, T.K. Chen, Numerical investigation on the mixed convection and heat transfer of supercritical water in horizontal tubes in the large specific heat region, Comput. Fluids 64(15) (2012) 127-140. [20] L. Diao, Y. Chen, Y.X. Lia, Nonuniform heat transfer of supercritical pressure carbon dioxide under turbulent cooling condition in circular tubes at various inclination angles, Nucl. Eng. Des. 352(2019) 110153. [21] M. F Qu, D. Yang, Z. Y. Liang, L. Wan, D. Liu. Experimental and numerical investigation on heat transfer of ultra-supercritical water in vertical upward tube under uniform and non-uniform heating, International Journal of Heat and Mass Transfer 127(2018)769-783. [22] J. Wen, H.R. Huang, Z.X. Jia, Y.C. Fu, G.Q. Xu, Buoyancy effects on heat transfer to supercritical pressure hydrocarbon fuel in a horizontal miniature tube, Int. J. Heat Mass Transf. 115(2017) 1173-1181. [23] Z.Y. Cheng, Z. Tao, J.Q. Zhu, H.W. Wu, Diameter effect on the heat transfer of supercritical hydrocarbon fuel in horizontal tubes under turbulent conditions, Appl. Therm. Eng. 134(2018) 39-53. [24] X. Sun, K.K. Xu, H. Meng, Y. Zheng, Buoyancy effects on supercritical-pressure conjugate heat transfer of aviation kerosene in horizontal tubes, J. Supercrit. Fluids 139(2018) 105-113. [25] R.P. Jiang, G.Z. Liu, X.W. Zhang, Thermal cracking of hydrocarbon aviation kerosene fuels in regenerative cooling micro-channels, Energy Fuel 27(2013) 2563-2577. [26] H.W. Deng, C.B. Zhang, G.Q. Xu, Z. Tao, K. Zhu, Y.J. Wang, Visualization experiments of a specific fuel flow through quartz-glass tubes under both sub- and supercritical conditions, Chin. J. Aeronaut. 25(3) (2012) 372-380. [27] H.W. Deng, C.B. Zhang, G.Q. Xu, Z. Tao, B. Zhang, G.Z. Liu, Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions, J. Chem. Eng. Data 56(6) (2011) 2980-2986. [28] H.W. Deng, K. Zhu, G.Q. Xu, Z. Tao, C.B. Zhang, G.Z. Liu, Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions, J. Chem. Eng. Data 57(2) (2012) 263-268. [29] Z.X. Jia, G.Q. Xu, H.W. Deng, J. Wen, Y.C. Fu, Experimental measurements of thermal conductivity of hydrocarbon fuels by a steady and kinetic method, J. Therm. Anal. Calorim. 123(1) (2016) 891-898. [30] H.W. Deng, C.B. Zhang, G.Q. Xu, B. Zhang, Z. Tao, K. Zhu, Viscosity measurements of endothermic hydrocarbon fuel from (298 to 788) K under supercritical pressure conditions, J. Chem. Eng. Data 57(2) (2012) 358-365. [31] Y.H. Wang, S.F. Li, M. Dong, Experimental investigation on heat transfer deterioration and thermo-acoustic instability of supercritical-pressure aviation kerosene within a vertical upward circular tube, Appl. Therm. Eng. 157(2019) 113707. [32] K.W. Song, W.L. Hu, S. Liu, B.L. Wang, Quantitative relationship between secondary flow intensity and heat transfer intensity in flat-tube-and-fin air heat exchanger with vortex generators, Appl. Therm. Eng. 103(25) (2016) 1064-1070. [33] K.K. Xu, L.J. Tang, H. Meng, Numerical study of supercritical-pressure fluid flows and heat transfer of methane in ribbed cooling tubes, Int. J. Heat Mass Transf. 84(2015) 346-358. [34] L.L. Wang, Z. Chen J., H. Meng, Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures, Applied Thermal Engineering 54(1) (2013) 237-246. [35] D.B.R. Wang, Y. TianZhang, L.L. Li, Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube, International Journal of Heat and Mass Transfer 129(2019) 1194-1205. [36] B.S. Petukhov, A.F. Polyakof, V.A. Kuleshov, Y.L. Sheckter, Turbulent Flow and Heat Transfer in Horizontal Tubes with Substantial Influence of Thermo-Gravitational Forces, Proceed. Fifth International Heat Transfer Conference, Tokyo, 19743-7. [37] J.D. Jackson, W.B. Hall, Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes under Turbulent Conditions, Hemisphere Publishing Corporation, New York, Turbulent Forced Convection in Channels and Bundles, 1979613-640. [38] E.N. Sieder, G.E. Tate, Heat transfer and pressure drop of liquids in tubes, Industrial Engineering Chemistry 28(1936) 1429-1435. [39] X. Cheng, Y.H. Yang, S.F. Huang, A simplified method for heat transfer prediction of supercritical fluids in circular tubes, Ann. Nucl. Energy 36(2009) 1120-1128. [40] I.L. Pioro, H.F. Khartabil, R.B. Duffey, Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey), Nucl. Eng. Des. 230(1-3) (2004) 69-91. |