[1] Y. Qian, P. Wei, P. Jiang, et al., Synthesis of a novel hybrid synergistic flame retardant and its application in PP/IFR, Polym. Degrad. Stab. 96(6) (2011) 1134-1140. [2] W. Tang, S. Zhang, J. Sun, et al., Flame retardancy and thermal stability of polypropylene composite containing ammonium sulfamate intercalated kaolinite, Ind. Eng. Chem. Res. 55(28) (2016) 7669-7678. [3] Y. Li, C. Kuan, S. Hsu, et al., Preparation, thermal stability and flame-retardant properties of halogen-free polypropylene composites, Gu. Polym. Compos. 24(6) (2012) 478-487. [4] Z. Zheng, Y. Liu, L. Zhang, et al., Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene, J. Mater. Sci 51(12) (2016) 5857-5871. [5] D. Xiao, Z. Li, S.D. Juan, et al., Preparation, fire behavior and thermal stability of a novel flame retardant polypropylene system, J. Therm. Anal. Calorim. 125(1) (2016) 321-329. [6] S. Zhou, Z. Wang, Z. Gui, et al., Flammability and thermal degradation of flame retarded PP composites containing melamine phosphate and pentaerythritol derivatives, Polym. Degrad. Stab. 90(3) (2005) 523-534. [7] H. Xie, X. Lai, H. Li, et al., Synthesis of a novel macromolecular charring agent with free-radical quenching capability and its synergism in flame retardant polypropylene, Polym. Degrad. Stab. 130(2016) 68-77. [8] C. Wang, J. Li, P. Ding, Roles of supermolecule structure of melamine phosphomolybdate in intumescent flame retardant polypropylene composites, J. Anal. Appl. Pyrolysis 119(2016) 139-146. [9] F. Qi, M. Tang, N. Wang, et al., Efficient organic-inorganic intumescent interfacial flame retardants to prepare flame retarded polypropylene with excellent performance, RSC Adv. 7(50) (2017) 31696-31706. [10] C. Zhu, M. He, Y. Liu, et al., Synthesis and application of a mono-component intumescent flame retardant for polypropylene, Polym. Degrad. Stab. 151(2018) 144-151. [11] J. Alongi, Z. Han, S. Bourbigot, Intumescence:Tradition versus novelty. A comprehensive review, Prog. Polym. Sci. 51(2015) 28-73. [12] R. Kurt, F. Mengeloglu, H. Meric, The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of woodHDPE polymer composites, Eur. J. Wood Wood Prod. 70(1-3) (2012) 177-182. [13] Y. Rong, M. Binbin, Z. Hui, et al., Preparation, thermal degradation, and fire behaviors of intumescent flame retardant polypropylene with a charring agent containing pentaerythritol and triazine, Ind. Eng. Chem. Res. (2016) 55(18). [14] M. Etcheverry, S.E. Barbosa, Glass fiber reinforced polypropylene mechanical properties enhancement by adhesion improvement, Materials 5(12) (2012) 1084-1113. [15] J.Z. Liang, Tensile properties of hollow glass bead-filled polypropylene composites, J. Appl. Polym. Sci. 104(3) (2007) 1697-1701. [16] Y. Liu, C.L. Deng, J. Zhao, et al., An efficiently halogen-free flame-retardant longglass-fiber-reinforced polypropylene system, Polym. Degrad. Stab. 96(3) (2011) 363-370. [17] L. Liu, Y.S. Liu, Y. Han, Y. Liu, Q. Wang, Interfacial charring method to overcome the wicking action in glass fiber-reinforced polypropylene composite, Compos. Sci. Technol. 121(2015) 9-15. [18] M.M. Li, Y.H. Chen, Q. Wang, N-P halogen free flame retardant and flame retardant glass fiber reinforced nylon 6, Polym. Mater. Sci. Eng. 22(1) (2006) 241-245. [19] Y. Han, Y. Xu, Y. Liu, et al., An efficient interfacial flame-resistance mode to prepare glass fiber reinforced and flame retarded polyamide 6 with high performance, J. Mater. Chem. A 1(35) (2013) 10228-10233. [20] W. Chen, P. Liu, Y. Liu, et al., Interfacial carbonation for efficient flame retardance of glass fiber-reinforced polyamide 6, Polym. Chem. 6(24) (2015) 4409-4414. [21] W. Yang, Y.R. Zhang, C.Y. Yuen, et al., Synthesis of phosphorus-containing silane coupling agent for surface modification of glass fibers:Effective reinforcement and flame retardancy in poly(1,4-butylene terephthalate), Chem. Eng. J. 321(2017) 257-267. [22] M. Chen, Y. Xu, X. Chen, et al., Thermal stability and combustion behavior of flameretardant polypropylene with thermoplastic polyurethane-microencapsulated ammonium polyphosphate, High Perform. Polym. 26(4) (2014) 445-454. [23] M. Batistella, B. Otazaghine, R. Sonnier, et al., Fire retardancy of polypropylene/kaolinite composites, Polym. Degrad. Stab. 129(2016) 260-267. [24] H. Xie, X. Lai, H. Li, et al., Remarkably improving the fire-safety of polypropylene by synergism of functionalized ZrP nanosheet and N-alkoxy hindered amine, Appl. Clay Sci. (2018) 61-73. [25] S. Xiao-Hui, X. Ying-Jun, L. Jia-Wei, et al., Layer-by-layer assembled flame-retardant architecture toward high-performance carbon fiber composite, Chem. Eng. J. 353(2018) 550-558. [26] B. Biswas, B.K. Kandola, A.R. Horrocks, et al., A quantitative study of carbon monoxide and carbon dioxide evolution during thermal degradation of flame retarded epoxy resins, Polym. Degrad. Stab. 92(5) (2007) 765-776. [27] D. Enescu, A. Frache, M. Lavaselli, et al., Novel phosphorous-nitrogen intumescent flame retardant system. Its effects on flame retardancy and thermal properties of polypropylene, Polym. Degrad. Stab. 98(1) (2013) 297-305. [28] B. Wang, X. Wang, Y. Shi, et al., Effect of vinyl acetate content and electron beam irradiation on the flame retardancy, mechanical and thermal properties of intumescent flame retardant ethylene-vinyl acetate copolymer, Radiat. Phys. Chem. 81(3) (2012) 308-315. [29] M.E. Shabestari, E.N. Kalali, V.J. Gonzalez, et al., Effect of nitrogen and oxygen doped carbon nanotubes on flammability of epoxy nanocomposites, Carbon (2017) 193-200. [30] S. Bourbigot, M.L. Bras, R. Delobel, et al., Synergistic effect of zeolite in an intumescence process:study of the carbonaceous structures using solid-state NMR, J. Chem. Soc. Faraday Trans. 92(1) (1996) 149-158. [31] B. Yuan, A. Fan, M. Yang, et al., The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios, Polym. Degrad. Stab. (2017) 42-56. [32] Z. Qin, R. Yang, W. Zhang, et al., Synergistic barrier effect of aluminum phosphate on flame retardant polypropylene based on ammonium polyphosphate/dipentaerythritol system, Mater. Des. 181(2019), 107913. |