Chinese Journal of Chemical Engineering ›› 2021, Vol. 33 ›› Issue (5): 147-159.DOI: 10.1016/j.cjche.2020.09.010
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Aisha Kanwal1, Shamaila Sajjad1, Sajjad Ahmed Khan Leghari2, Muhammad Naeem Khan3
Received:
2020-03-06
Revised:
2020-09-07
Online:
2021-08-19
Published:
2021-05-28
Contact:
Shamaila Sajjad
Supported by:
Aisha Kanwal1, Shamaila Sajjad1, Sajjad Ahmed Khan Leghari2, Muhammad Naeem Khan3
通讯作者:
Shamaila Sajjad
基金资助:
Aisha Kanwal, Shamaila Sajjad, Sajjad Ahmed Khan Leghari, Muhammad Naeem Khan. Strong interfacial charge transfer between hausmannite manganese oxide and alumina for efficient photocatalysis[J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 147-159.
Aisha Kanwal, Shamaila Sajjad, Sajjad Ahmed Khan Leghari, Muhammad Naeem Khan. Strong interfacial charge transfer between hausmannite manganese oxide and alumina for efficient photocatalysis[J]. 中国化学工程学报, 2021, 33(5): 147-159.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.09.010
[1] C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, P.M. Davies, Global threats to human water security and river biodiversity, Nature 467(2010) 555-561. [2] S. Shamaila, T. Bano, A.K.L. Sajjad, Efficient visible light magnetic modified iron oxide photocatalysts, Ceram. Int. 43(2017) 14672-14677. [3] S. Dawood, T. Sen, Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents, J. Chem. Process Eng. 1(2014) 1-11. [4] G.S. Jamila, S. Shamaila, A.K.L. Sajjad, M. Long, Nitrogen doped carbon quantum dots and GO modified WO3 nanosheets combination as an effective visible photocatalyst, J. Hazard. Mater. 382(2020) 121087. [5] Y. Wei, Y. Zhang, W. Geng, H. Su, M. Long, Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr (VI) in water, Appl. Catal. B: Environ. 259(2019) 118084. [6] J. Zhang, L. Zheng, F. Wang, C. Chen, H. Wu, S.A.K. Leghari, M. Long, The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2, Appl. Catal. B: Environ. 269(2020) 118770. [7] N. Saima, S. Sajjad, A.K.L. Sajjad, S. Sania, A. Iqbal, ZnO/TiO2 nanocomposite photoanode as an effective UV-vis responsive dye sensitized solar cell, Mater. Res. Express 5(9) (2018) 095905. [8] S.A.B. Asif, S.B. Khan, A.M. Asiri, Visible light functioning photocatalyst based on Al2O3 doped Mn3O4 nanomaterial for the degradation of organic toxin, Nanoscale Res. Lett. 10(1) (2015) 355. [9] A. Iqbal, S. Sajjad, S.A.K. Leghari, Low cost graphene oxide modified alumina nanocomposite as solar light induced photocatalyst, ACS Appl. Nano Mater. 1(9) (2018) 4612-4621. [10] S. Balamurugan, A.R. Balu, V. Narasimman, G. Selvan, K. Usharani, J. Srivind, V. S. Nagarethinam, Multi metal oxide CdO-Al2O3-NiO nanocompositesynthesis, photocatalytic and magnetic properties, Mater. Res. Express 6(1) (2018) 015022. [11] N.R. Habib, A.M. Taddesse, A. Temesgen, Synthesis, characterization and photocatalytic activity of Mn2O3/Al2O3/Fe2O3 nanocomposite for degradation of malachite green, Bull. Chem. Soc. Ethiop. 32(1) (2018) 101-109. [12] B. Kasprzyk-Hordern, Chemistry of alumina, Reactions in aqueous solution and its application in water treatment, Adv. Coll. Interf. Sci. 110(2004) 19-48. [13] B. Veith, F. Werner, D. Zielke, R. Brendel, J. Schmidt, Comparison of the thermal stability of single Al2O3 layers and Al2O3/SiNx stacks for the surface passiviation of silicon, Energy Proc. 8(2011) 307-312. [14] Z. Huang, A. Zhou, J. Wu, Y. Chen, X. Lan, H. Bai, L. Li, Bottom-up preparation of ultrathin 2D Aluminum oxide nanosheets by duplicating graphene oxide, Adv. Mater. 28(2016) 1703-1708. [15] Y. Li, C. Peng, L. Li, P. Rao, Self-assembled 3D hierarchically structured gamma alumina by hydrothermal method, J. Amer. Ceram. Soc. 97(2014) 35-39. [16] M. Derakhshani, A. Hashamzadeh, M.M. Amini, High surface area mesoporous alumina nanosheets and nanorolls from an aluminum based metal organic framework, Ceram. Int. 42(2016) 17742-17748. [17] F. Arena, T. Torre, C. Raimondo, A. Parmaliana, Structure and redox properties of bulk and supported manganese oxide catalysts, PCCP 3(10) (2001) 1911-1917. [18] G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta 92(2013) 205-215. [19] E.R. Ezeigwe, M.T. Tan, P.S. Khiew, C.W. Siong, Solvothermal synthesis of graphene-MnO2 nanocomposites and their electrochemical behavior, Ceram. Int. 41(9) (2015) 11418-11427. [20] G.C. Silva, F.S. Almeida, A.M. Ferreira, V.S.T. Ciminelli, Preparation and application of a magnetic composite (Mn3O4/Fe3O4) for removal of As (III) from aqueous solutions, Mater. Res. 15(3) (2012) 403-408. [21] M. Rekha, H. Kathyayini, N. Nagaraju, Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines, Front. Chem. Sci. Eng. 7(4) (2013) 415-421. [22] E. Rezaei, J. Soltan, Low temperature oxidation of toluene by ozone over MnOx/ c-alumina and MnOx/MCM-41 catalysts, Chem. Eng. J. 198(2012) 482-490. [23] J. Pei, W. Ma, R. Li, Y. Li, H. Du, Preparation and photocatalytic properties of TiO2-Al2O3 composite loaded catalysts, J. Chem. 2015(2015) 1-7. [24] S. Alemu, E. Mulugeta, F. Zewge, B.S. Chandravanshi, Water defluoridation by aluminium oxide-manganese oxide composite material, Environ. Technol. 35(15) (2014) 1893-1903. [25] C. Ray, S. Dutta, Y. Negishi, T. Pal, A new stable Pd-Mn3O4 nanocomposite as an efficient electrocatalyst for the hydrogen evolution reaction, Chem. Commun. 52(36) (2016) 6095-6098. [26] Y. Wu, D. Chu, P. Yang, Y. Du, C. Lu, Ternary mesoporous WO3/Mn3O4/N-doped graphene nanocomposite for enhanced photocatalysis under visible light irradiation, Catal. Sci. Technol. 5(6) (2015) 3375-3382. [27] D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, H. Ala’a, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye, Int. J. Biol. Macromol. 87(2016) 366-374. [28] F. Shehata, M. Abdelhameed, A. Fathy, M. Elmahdy, Preparation and characteristics of Cu-Al2O3 nanocomposite, Open J. Metal 1(2) (2011) 25. [29] J.F. Bartolomé, A. Smirnov, H.D. Kurland, J. Grabow, F.A. Müller, New ZrO2/ Al2O3 nanocomposite fabricated from hybrid nanoparticles prepared by CO2 laser Co-vaporization, Sci. Rep. 6(2016) 20589. [30] Z. Wan, J. Wang, Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst, J. Hazard. Mater. 324(2017) 653-664. [31] S. Motaghi, M. Farahmandjou, Structural and optoelectronic properties of Ce-Al2O3 nanoparticles prepared by sol-gel precursors, Mater. Res. Express 6(4) (2019) 045008. [32] B.J. Rani, M. Ravina, G. Ravi, S. Ravichandran, V. Ganesh, R. Yuvakkumar, Synthesis and characterization of hausmannite (Mn3O4) nanostructures, Surf. Interfaces 11(2018) 28-36. [33] H. Dhaouadi, O. Ghodbane, F. Hosni, F. Touati, Mn3O4 nanoparticles: Synthesis, characterization, and dielectric properties, ISRN Spectroscopy 2012(2012) 1-8. [34] R. Tholkappiyan, A.N. Naveen, K. Vishista, F. Hamed, Investigation on the electrochemical performance of hausmannite Mn3O4 nanoparticles by ultrasonic irradiation assisted co-precipitation method for supercapacitor electrodes, J. Taibah Univ. Sci. 12(5) (2018) 669-677. [35] A.S. Jbara, Z. Othaman, A.A. Ati, M.A. Saeed, Characterization of γ-Al2O3 nanopowders synthesized by Co-precipitation method, Mater. Chem. Phys. 188(2017) 24-29. [36] S. Dey, Synthesis and Application of c-Alumina Nanopowders, Ph.D Thesis, Indian Institute of Technology, West Bengal, 2012. [37] T.P.M. Chu, N.T. Nguyen, T.L. Vu, T.H. Dao, L.C. Dinh, H.L. Nguyen, T.D. Pham, Synthesis, characterization and modification of alumina nanoparticles for cationic dye removal, Materials 12(3) (2019) 450. [38] S.A. Hosseini, A. Niaei, D. Salari, Production of γ-Al2O3 from Kaolin, Open J. Phys. Chem. 1(02) (2011) 23. [39] M. Mahinroosta, A. Allahverdi, Production of nanostructured c-alumina from aluminum foundry tailing for catalytic applications, Int. Nano Lett. 8(4) (2018) 255-261. [40] J. Du, Y. Gao, L. Chai, G. Zou, Y. Li, Y. Qian, Hausmannite Mn3O4 nanorods: Synthesis, characterization and magnetic properties, Nanotechnology 18(15) (2007) 158002. [41] A.A. Ullah, A.F. Kibria, M. Akter, M.N.I. Khan, M.A. Maksud, R.A. Jahan, S.H. Firoz, Synthesis of Mn3O4 nanoparticles via a facile gel formation route and study of their phase and structural transformation with distinct surface morphology upon heat treatment, J. Saudi Chem. Soc. 21(7) (2017) 830-836. [42] H. Rahaman, S.K. Ghosh, Soft-templated synthesis of Mn3O4 microdandelions for the degradation of alizarin red under visible light irradiation, RSC Adv. 6(6) (2016) 4531-4539. [43] S.H. Lai, Y.B. Chen, N. Li, H. Su, S.H. Guo, Novel gC3N4 wrapped γ-Al2O3 microspheres heterojunction for efficient photocatalytic application under visible light irradiation, J. Mater. Sci.: Mater. Electron. 29(6) (2018) 4509-4516. [44] A. Amirsalari, S.F. Shayesteh, Effects of pH and calcination temperature on structural and optical properties of alumina nanoparticles, Superlattices Microstruct. 82(2015) 507-524. [45] V.B. Mikhailik, H. Kraus, D. Wahl, M.S. Mykhaylyk, Luminescence studies of Tidoped Al2O3 using vacuum ultraviolet synchrotron radiation, Appl. Phys. Lett. 86(10) (2005) 101909. [46] Y. Zhou, L. Guo, W. Shi, X. Zou, B. Xiang, S. Xing, Rapid production of Mn3O4/rGO as an efficient electrode material for supercapacitor by flame plasma, Materials 11(6) (2018) 881. [47] C. Cummins, A. Gangnaik, R.A. Kelly, D. Borah, J. O’Connell, N. Petkov, M.A. Morris, Aligned silicon nanofins via the directed self-assembly of PS-b-P4VP block copolymer and metal oxide enhanced pattern transfer, Nanoscale 7(15) (2015) 6712-6721. [48] S. Shamaila, A.K.L. Sajjad, F. Chen, J. Zhang, Study on highly visible light active Bi2O3 loaded ordered mesoporous titania, Appl. Catal. B: Environ. 94(3-4) (2010) 272-280. [49] S. Das, S. Patnaik, K.M. Parida, Fabrication of a Au-loaded CaFe2O4/CoAl LDH p-n junction based architecture with stoichiometric H2& O2 generation and Cr (VI) reduction under visible light, Inorg. Chem. Front. 6(1) (2019) 94-109. [50] L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, S. Agarwal, V.K. Gupta, Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes, J. Photochem. Photobiol., B 173(2017) 43-49. [51] S.A.K. Leghari, S. Sajjad, J. Zhang, A time saving and cost effective route for metal oxides activation, RSC Adv. 4(10) (2014) 5248-5253. [52] D.C. Kalyani, S.S. Phugare, U.U. Shedbalkar, J.P. Jadhav, Purification and characterization of a bacterial peroxidase from the isolated strain Pseudomonas sp. SUK1 and its application for textile dye decolorization, Ann. Microbiol. 61(3) (2011) 483-491. [53] V. Murali, S.A. Ong, L.N. Ho, Y.S. Wong, Evaluation of integrated anaerobic-aerobic biofilm reactor for degradation of azo dye methyl orange, Bioresour. Technol. 143(2013) 104-111. [54] A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst, J. Hazard. Mater. 177(1-3) (2010) 781-791. |
[1] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[2] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[3] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[4] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[5] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[6] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[7] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[8] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[9] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 116-123. |
[10] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
[11] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[12] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[13] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
[14] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
[15] | Feng Guo, Haoran Sun, Yuxing Shi, Fengyu Zhou, Weilong Shi. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 266-274. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||