[1] N. Asprion, G. Kaibel, Dividing wall columns:fundamentals and recent advances, Chem. Eng. Process. 49(2010) 139-146. [2] Y. Ömer, A.A. Kiss, E.Y. Kenig, Dividing wall columns in chemical process industry:A review on current activities, Sep. Purif. Technol. 80(2011) 403-417. [3] A.J. Tarjani, A.J. Toth, T. Nagy, et al., Thermodynamic and exergy analysis of energyintegrated distillation technologies focusing on dividing-wall columns with upper and lower partitions, Ind. Eng. Chem. Res. 57(2018) 3678-3684. [4] M. Aurangzeb, A.K. Jana, Vapor recompression with interreboiler in a ternary dividing wall column:Improving energy efficiency and savings, and economic performance, Appl. Therm. Eng. 147(2019) 1009-1023. [5] L. Xu, M. Li, X. Yin, et al., New intensified heat integration of vapor recompression assisted dividing wall column, Ind. Eng. Chem. Res. 56(2017) 2188-2196. [6] A. Yang, R. Wei, S. Sun, et al., Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes, Ind. Eng. Chem. Res. 57(2018) 8036-8056. [7] S.B. Yang, I.L. Chien, Rigorous design and optimization of methyl glycolate production process through reactive distillation combined with a middle dividing-wall column, Ind. Eng. Chem. Res. 58(2019) 5215-5227. [8] M.S. Lavasani, R. Rahimi, M. Zivdar, Response surface methodology in optimization of a divided wall column, Korean J. Chem. Eng. 35(2018) 1414-1422. [9] J. Yu, S.J. Wang, K. Huang, et al., Improving the performance of extractive dividingwall columns with intermediate heating, Ind. Eng. Chem. Res. 54(2015) 2709-2723. [10] L. Shi, K. Huang, S.J. Wang, et al., Application of vapor recompression to heterogeneous azeotropic dividing-wall distillation columns, Ind. Eng. Chem. Res. 54(2015) 11592-11609. [11] J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, NY, 1988. |