Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1510-1522.DOI: 10.1016/j.cjche.2018.08.015
• Selected Papers on Sustainable Chemical Process Systems • Previous Articles Next Articles
Yixin Ma1, Peizhe Cui2, Yongkun Wang2, Zhaoyou Zhu2, Yinglong Wang2, Jun Gao1
Received:
2018-05-04
Online:
2019-10-14
Published:
2019-07-28
Contact:
Yinglong Wang, Jun Gao
Yixin Ma1, Peizhe Cui2, Yongkun Wang2, Zhaoyou Zhu2, Yinglong Wang2, Jun Gao1
通讯作者:
Yinglong Wang, Jun Gao
Yixin Ma, Peizhe Cui, Yongkun Wang, Zhaoyou Zhu, Yinglong Wang, Jun Gao. A review of extractive distillation from an azeotropic phenomenon for dynamic control[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1510-1522.
Yixin Ma, Peizhe Cui, Yongkun Wang, Zhaoyou Zhu, Yinglong Wang, Jun Gao. A review of extractive distillation from an azeotropic phenomenon for dynamic control[J]. 中国化学工程学报, 2019, 27(7): 1510-1522.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.08.015
[1] H. Li, Y. Wu, X. Li, et al., State-of-the-art of advanced distillation technologies in China, Chem. Eng. Technol. 39(5) (2016) 815-833. [2] S. David, P. Ryan Lively, Seven chemical separations to change the world, Nature 532(7600) (2016) 435. [3] S. Widagdo, W.D. Seider, Journal review. Azeotropic distillation, AIChE J. 42(1) (1996) 96-130. [4] Z. Lei, C. Li, B. Chen, Extractive distillation:A review, Sep. Purif. Rev. 32(2) (2003) 121-213. [5] S.Liang,Y.Cao,X.Liu,etal.,Insightintopressure-swingdistillationfromazeotropic phenomenon to dynamic control, Chem. Eng. Res. Des. 117(2017) 318-335. [6] G. Modla, P. Lang, Separation of an acetone methanol mixture by pressureswing batch distillation in a double-column system with and without thermal integration, Ind. Eng. Chem. Res. 49(8) (2010) 3785-3793. [7] W. Huang, H. Li, R. Wang, et al., Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol:Kinetics and reactive distillation, Chem. Eng. Process. 120(2017) 173-183. [8] X. Li, R. Wang, J. Na, et al., Reversible reaction-assisted intensification process for separating the Azeotropic mixture of Ethanediol and 1,2-Butanediol:Reactants screening, Ind. Eng. Chem. Res. 57(2) (2018) 710-717. [9] H. Li, Z. Zhao, J. Qin, et al., Reversible reaction-assisted intensification process for separating the Azeotropic mixture of Ethanediol and 1,2-Butanediol:Vapor-liquid equilibrium and economic evaluation, Ind. Eng. Chem. Res. 57(14) (2018) 5083-5092. [10] J. Prausnitz, R. Anderson, Thermodynamics of solvent selectivity in extractive distillation of hydrocarbons, AIChE J. 7(1) (1961) 96-101. [11] H. Matsuda, H. Takahara, S. Fujino, et al., Selection of entrainers for the separation of the binary azeotropic system methanol+dimethyl carbonate by extractive distillation, Fluid Phase Equilib. 310(1-2) (2011) 166-181. [12] A.Y. Sazonova, V.M. Raeva, T.V. Chelyuskina, et al., Choice of extractive agents for separating benzene-perfluorobenzene biazeotropic mixture based on thermodynamic criterion, Theor. Found. Chem. Eng. 48(2) (2014) 148-157. [13] Y. Wang, P. Cui, Y. Ma, et al., Extractive distillation and pressure-swing distillation for THF/ethanol separation, J. Chem. Technol. Biotechnol. 90(8) (2015) 1463-1472. [14] I.D. Gil, D.C. Botía, P. Ortiz, et al., Extractive distillation of acetone/methanol mixture using water asEntrainer, Ind. Eng. Chem. Res.48(10)(2009) 4858-4865. [15] Z. Bao, W. Zhang, X. Cui, et al., Design, optimization and control of extractive distillation for the separation of Trimethyl borate-methanol, Ind. Eng. Chem. Res. 53(38) (2014) 14802-14814. [16] F. Lastari, V. Pareek, M. Trebble, et al., Extractive distillation for CO2-ethane azeotrope separation, Chem. Eng. Process. 52(2012) 155-161. [17] E. Lladosa, J.B. Montón, M. Burguet, Separation of di-n-propyl ether and npropyl alcohol by extractive distillation and pressure-swing distillation:Computer simulation and economic optimization, Chem. Eng. Process. 50(11-12) (2011) 1266-1274. [18] G. Li, Y. Yu, P. Bai, Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent, Pol. J. Chem. Technol. 14(3) (2012) 48-53. [19] Z. Fan, X. Zhang, W. Cai, et al., Design and control of extraction distillation for dehydration of tetrahydrofuran, Chem. Eng. Technol. 36(5) (2013) 829-839. [20] S. Yang, Y. Wang, G. Bai, et al., Design and control of an extractive distillation system for benzene/acetonitrile separation using dimethyl sulfoxide as an Entrainer, Ind. Eng. Chem. Res. 52(36) (2013) 13102-13112. [21] I.D. Gil, J.M. Gómez, G. Rodríguez, Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer, Comput. Chem. Eng. 39(2012) 129-142. [22] J. Qin, Q. Ye, X. Xiong, et al., Control of benzene-cyclohexane separation system via extractive distillation using Sulfolane as Entrainer, Ind. Eng. Chem. Res. 52(31) (2013) 10754-10766. [23] Q. Wang, B. Yu, C. Xu, Design and control of distillation system for methylal/methanol separation. Part 1:Extractive distillation using DMF as an Entrainer, Ind. Eng. Chem. Res. 51(3) (2016) 1281-1292. [24] M.A.S.S. Ravagnani, M.H.M. Reis, R.M. Filho, et al., Anhydrous ethanol production by extractive distillation:A solvent case study, Process. Saf. Environ. Prot. 88(1) (2010) 67-73. [25] J.Á. Pacheco-Basulto, D. Hernández-McConville, F.O. Barroso-Muñoz, et al., Purification of bioethanol using extractive batch distillation:Simulation and experimental studies, Chem. Eng. Process. 61(2012) 30-35. [26] P. Kittisupakorn, K. Jariyaboon, W. Weerachaipichasgul, Optimal high purity acetone production in a batch extractive distillation column, Proceedings of the International MultiConference of Engineers and Computer Scientists, 1, 2013, pp. 143-147. [27] H. Luo, K. Liang, W. Li, et al., Comparison of pressure-swing distillation and extractive distillation methods for isopropyl alcohol/Diisopropyl ether separation, Ind. Eng. Chem. Res. 53(39) (2014) 15167-15182. [28] S. Tututi-Avila, A. Jiménez-Gutiérrez, J. Hahn, Control analysis of an extractive dividing-wall column used for ethanol dehydration, Chem. Eng. Process. 82(2014) 88-100. [29] H. Yu, Q. Ye, H. Xu, et al., Comparison of alternative distillation processes for the maximum-boiling ethylenediamine dehydration system, Chem. Eng. Process. 97(2015) 84-105. [30] M.T.G. Jongmans, B. Schuur, A.B. de Haan, Ionic liquid screening for ethylbenzene/styrene separation by extractive distillation, Ind. Eng. Chem. Res. 50(18) (2011) 10800-10810. [31] J. Pla-Franco, E. Lladosa, S. Loras, et al., Approach to the 1-propanol dehydration using an extractive distillation process with ethylene glycol, Chem. Eng. Process. 91(2015) 121-129. [32] X. Zhang, X. Li, G. Li, et al., Determination of an optimum entrainer for extractive distillation based on an isovolatility curve at different pressures, Sep. Purif. Technol. 201(2018) 79-95. [33] W.L. Luyben, Comparison of extractive distillation and pressure-swing distillation for acetone-methanol separation, Ind. Eng. Chem. Res. 47(8) (2008) 2696-2707. [34] U.M. García-Ventura, F.O. Barroso-Muñoz, S. Hernández, et al., Experimental study of the production of high purity ethanol using a semi-continuous extractive batch dividing wall distillation column, Chem. Eng. Process. 108(2016) 74-77. [35] K.-M. Lo, I.L. Chien, Efficient separation method for tert -butanol dehydration via extractive distillation, J. Taiwan Inst. Chem. Eng. 73(2017) 27-36. [36] I.V. Ivanov, V.A. Lotkhov, K.A. Moiseeva, et al., Mass transfer in a packed extractive distillation column, Theor. Found. Chem. Eng. 50(5) (2016) 667-677. [37] Z. Lei, R. Zhou, Z. Duan, Separating 1-butene and 1, 3-butadiene with DMF and DMF with salt by extractive distillation, J. Chem. Eng. Jpn 35(2) (2002) 211-216. [38] S.Navarrete-Contreras,M.Sánchez-Ibarra,F.O.Barroso-Muñoz,etal.,Useofglycerol as entrainer in the dehydration of bioethanol using extractive batch distillation:Simulation and experimental studies, Chem. Eng. Process. 77(2014) 38-41. [39] S. Pradhan, A. Kannan, Simulation and analysis of extractive distillation process in a valve tray column using the rate based model, Korean J. Chem. Eng. 22(3) (2005) 441-451. [40] E.Quijada-Maldonado,T.A.M.Aelmans,G.W.Meindersma,etal.,Pilotplantvalidation of a rate-based extractive distillation model for water-ethanol separation with the ionic liquid[emim] [DCA] as solvent, Chem. Eng. J. 223(3) (2013) 287-297. [41] P.D.G. Kortüm, D.-C.A. Bittel, Die Trennung primärer, sekundärer und tertiärer aromatischer Amine durch extraktive Destillation. I. Entwicklung und Prüfung einer Laboratoriumskolonne, Chem. Ing. Tech. 28(1) (1956) 40-44. [42] H. Yatim, P. Moszkowicz, M. Otterbein, et al., Dynamic simulation of a batch extractive distillation process, Comput. Chem. Eng. 17(1) (1992) S57-S62. [43] R. Düssel, J. Stichlmair, Separation of azeotropic mixtures by batch distillation using an entrainer, Comput. Chem. Eng. 19(1) (1995) 113-118. [44] P. Lang, Z. Lelkes, P. Moszkowicz, et al., Different operational policies for the batch extractive distillation, Comput. Chem. Eng. 19(1) (1995) 645-650. [45] V. Varga, E.R. Frits, V. Gerbaud, et al., Separation of azeotropes in batch extractive stripper with intermediate entrainer, Comput. Aided Chem. Eng. 21(06) (2006) 793-797. [46] I.M. Mujtaba, Optimization of batch extractive distillation processes for separating close boiling and azeotropic mixtures, Chem. Eng. Res. Des. 77(7) (1999) 588-596. [47] R.A. Cook, W.F. Fvrter, Extractive distillation employing a dissolved salt as separating agent, Can. J. Chem. Eng. 46(2) (1968) 119-123. [48] M.A.M. Hussain, P.H. Pfromm, Reducing the energy demand of cellulosic ethanol through salt extractive distillation enabled by electrodialysis, Sep. Sci. Technol. 48(10) (2013) 1518-1528. [49] X. Wang, L. Xie, P. Tian, et al., Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/N -propanol, Chem. Eng. Process. 110(2016) 172-187. [50] O.A. Deorukhkar, B.S. Deogharkar, Y.S. Mahajan, Purification of tetrahydrofuran from its aqueous azeotrope by extractive distillation:Pilot plant studies, Chem. Eng. Process. 105(2016) 79-91. [51] Y. Dong, C. Dai, Z. Lei, Extractive distillation of methylal/methanol mixture using the mixture of dimethylformamide (DMF) and ionic liquid as entrainers, Fuel 216(2018) 503-512. [52] Y. Dong, C. Dai, Z. Lei, Extractive distillation of methylal/methanol mixture using ethylene glycol as entrainer, Fluid Phase Equilib. 462(2018) 172-180. [53] I. Díaz, J. Palomar, M. Rodríguez, et al., Ionic liquids as entrainers for the separation of aromatic-aliphatic hydrocarbon mixtures by extractive distillation, Chem. Eng. Res. Des. 115(2016) 382-393. [54] C.Dai,Z.Lei,X.Xi,etal.,Extractivedistillationwithamixtureoforganicsolvent and ionic liquid as entrainer, Ind. Eng. Chem. Res. 53(40) (2014) 15786-15791. [55] J.Han,Z.Lei,Y.Dong,etal.,Processintensificationontheseparationofbenzene and thiophene by extractive distillation, AICHE J. 61(12) (2015) 4470-4480. [56] Z. Zhu, X. Geng, W. He, et al., Computer-aided screening of ionic liquids as entrainers for separating methyl acetate and methanol via extractive distillation, Ind. Eng. Chem. Res. 57(29) (2018) 9656-9664. [57] W.F. Furter, Extractive distillation by salt effect, Chem. Eng. Commun. 116(1) (1992) 35-40. [58] Z. Zhu, Y. Ri, H. Jia, et al., Process evaluation on the separation of ethyl acetate and ethanol using extractive distillation with ionic liquid, Sep. Purif. Technol. 181(2017) 44-52. [59] H.-H. Chen, M.-K. Chen, B.-C. Chen, et al., Critical assessment of using ionic liquid as Entrainer via extractive distillation, Ind. Eng. Chem. Res. 56(27) (2017) 7768-7782. [60] G. Fieg, Distillation design and control using aspen simulation. Von W. L. Luyben (page 312), Chem. Ing. Tech. 87(3) (2015) 312. [61] P. Lek-Utaiwan, B. Suphanit, P.L. Douglas, et al., Design of extractive distillation for the separation of close-boiling mixtures:Solvent selection and column optimization, Comput. Chem. Eng. 35(6) (2011) 1088-1100. [62] H. Li, J. Zhang, D. Li, et al., Monte Carlo simulations of vapour-liquid phase equilibrium and microstructure for the system containing azeotropes, Mol. Simul. 43(13-16) (2017) 1125-1133. [63] H. Li, P. Zhou, J. Zhang, et al., A theoretical guide for screening ionic liquid extractants applied in the separation of a binary alcohol-ester azeotrope through a DFT method, J. Mol. Liq. 251(2018) 51-60. [64] W. Yin, S. Ding, S. Xia, et al., Cosolvent selection for benzene cyclohexane separation in extractive distillation, J. Chem. Eng. Data 55(9) (2010) 3274-3277. [65] B. Van Dyk, I. Nieuwoudt, Design of solvents for extractive distillation, Ind. Eng. Chem. Res. 39(5) (2000) 1423-1429. [66] T. Gaudin, P. Rotureau, G. Fayet, Mixture descriptors toward the development of quantitative structure-property relationship models for the flash points of organic mixtures, Ind. Eng. Chem. Res. 54(25) (2015) 6596-6604. [67] A.A. Oliferenko, P.V. Oliferenko, J.S. Torrecilla, et al., Boiling points of ternary azeotropic mixtures modeled with the use of the universal solvation equation and neural networks, Ind. Eng. Chem. Res. 51(26) (2012) 9123-9128. [68] A. Abbasi, R. Eslamloueyan, Determination of binary diffusion coefficients of hydrocarbon mixtures using MLP and ANFIS networks based on QSPR method, Chemom. Intell. Lab. Syst. 132(6) (2014) 39-51. [69] M. Shahlaei, Descriptor selection methods in quantitative structure-activity relationship studies:A review study, Chem. Rev. 113(10) (2013) 8093-8103. [70] Y.-M. Kang, Y. Jeon, S.B. Hwang, et al., Quantitative structure-relative volatility relationship model for extractive distillation of ethylbenzene/pxylene mixtures:Application to binary and ternary mixtures as extractive agents, Bull. Kor. Chem. Soc. 37(4) (2016) 548-555. [71] Y.-M. Kang, Y. Jeon, G. Lee, et al., Quantitative structure relative volatility relationship model for extractive distillation of ethylbenzene/p-xylene mixtures, Ind. Eng. Chem. Res. 53(27) (2014) 11159-11166. [72] A.B. Pereiro, J.M.M. Araújo, J.M.S.S. Esperança, et al., Ionic liquids in separations of azeotropic systems-a review, J. Chem. Thermodyn. 46(3) (2012) 2-28. [73] H.J. Huang, S. Ramaswamy, U.W. Tschirner, et al., A review of separation technologiesincurrentandfuturebiorefineries, Sep. Purif. Technol.62(1)(2008) 1-21. [74] W.L. Luyben, I.-L. Chien, Design and Control of Distillation Systems for Separating Azeotropes, John Wiley & Sons, Hoboken New Jersey, 2011. [75] A.Górak,Z.Olujić,Distillation:EquipmentandProcesses,AcademicPress,UK,2014. [76] T.H. Li, Y. Wu, X. Li, et al., State-of-the-art of advanced distillation technologies in China, Chem. Eng. Technol. 39(5) (2016) 815-833. [77] J. Gmehling, B. Kolbe, M. Kleiber, et al., Chemical Thermodynamics for Process Simulation, Wiley-VCH, 2012. [78] F. Eckert, A. Klamt, Fast solvent screening via quantum chemistry:COSMO-RS approach, AICHE J. 48(2) (2002) 369-385. [79] N. Churi,L.E.K.Achenie,Novelmathematicalprogrammingmodelforcomputer aided molecular design, Ind. Eng. Chem. Res. 35(10) (1996) 3788-3794. [80] P.M. Harper, R. Gani, P. Kolar, et al., Computer-aided molecular design with combined molecular modeling and group contribution, Fluid Phase Equilib. 158-160(5) (1999) 337-347. [81] S. Kossack, K. Kraemer, R. Gani, et al., A systematic synthesis framework for extractive distillation processes, Chem. Eng. Res. Des. 86(7) (2008) 781-792. [82] A.I. Papadopoulos, P. Linke, A decision support grid for integrated molecular solvent design and chemical process selection, Comput. Chem. Eng. 33(1) (2009) 72-87. [83] G.M. Ostrovsky, L.E. Achenie, M. Sinha, On the solution of mixed-integer nonlinear programming models for computer aided molecular design, Comput. Chem. 26(6) (2002) 645-660. [84] B. Marrufo, S. Loras, E. Lladosa, Phase equilibria involved in the extractive distillation of cyclohexane + cyclohexene using diethyl carbonate as an Entrainer, J. Chem. Eng. Data 56(12) (2011) 4790-4796. [85] M.T.G. Jongmans, A. Londoño, S.B. Mamilla, et al., Extractant screening for the separation of dichloroacetic acid from monochloroacetic acid by extractive distillation, Sep. Purif. Technol. 98(2012) 206-215. [86] X. Dai, Q. Ye, J. Qin, et al., Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer, Chem. Eng. Process. 100(2016) 49-64. [87] A.Y. Sazonova, V.M. Raeva, A.K. Frolkova, Design of extractive distillation process with mixed entrainer, Chem. Pap. 70(5) (2015) 594-601. [88] Y. Zhao, T. Zhao, H. Jia, et al., Optimization of the composition of mixed entrainer for economic extractive distillation process in view of the separation of tetrahydrofuran/ethanol/water ternary azeotrope, J. Chem. Technol. Biotechnol. 92(9) (2017) 2433-2444. [89] W.L. Luyben, Control of the maximum-boiling acetone/chloroform azeotropic distillation system, Ind. Eng. Chem. Res. 47(16) (2008) 6140-6149. [90] L. Li, L. Guo, Y. Tu, et al., Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation:Design and control, Comput. Chem. Eng. 99(2017) 117-134. [91] W.L. Luyben, Improved design of an extractive distillation system with an intermediate-boiling solvent, Sep. Purif. Technol. 156(2015) 336-347. [92] I. Rodriguez-Donis, V. Gerbaud, X. Joulia, Thermodynamic insights on the feasibility of homogeneous batch extractive distillation. 4. Azeotropic mixtures with intermediate boiling Entrainer, Ind. Eng. Chem. Res. 51(18) (2012) 6489-6501. [93] I. Rodriguez-Donis, V. Gerbaud, X. Joulia, Thermodynamic insights on the feasibility of homogeneous batch extractive distillation. 3. Azeotropic mixtures with light Entrainer, Ind. Eng. Chem. Res. 51(12) (2012) 4643-4660. [94] I. Rodriguez-Donis, V. Gerbaud, X. Joulia, Thermodynamic insights on the feasibility of homogeneous batch extractive distillation, 2. Low-relativevolatility binary mixtures with a heavy entrainer, Ind. Eng. Chem. Res. 48(7) (2009) 3560-3572. [95] W. Shen, V. Gerbaud, Extension of thermodynamic insights on batch extractive distillation to continuous operation. 2. Azeotropic mixtures with a light Entrainer, Ind. Eng. Chem. Res. 52(12) (2013) 4623-4637. [96] W. Shen, H. Benyounes, V. Gerbaud, Extension of thermodynamic insights on batch extractive distillation to continuous operation. 1. Azeotropic mixtures with a heavy Entrainer, Ind. Eng. Chem. Res. 52(12) (2013) 4606-4622. [97] N.VanDucLong,M.Lee,Optimalretrofitdesignofextractivedistillationtoenergy efficientthermallycoupleddistillationscheme, AIChE J.59(4)(2013)1175-1182. [98] A.A. Barreto, I. Rodriguez-Donis, V. Gerbaud, et al., Optimization of heterogeneous batch extractive distillation, Ind. Eng. Chem. Res. 50(9) (2011) 5204-5217. [99] G. Modla, Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer, Energy 50(2013) 103-109. [100] K. Dong, X. Liu, H. Dong, et al., Multiscale studies on ionic liquids, Chem. Rev. 117(10) (2017) 6636-6695. [101] R. Munoz, J. Monton, M. Burguet, et al., Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation:Simulation and optimization, Sep. Purif. Technol. 50(2) (2006) 175-183. [102] M. Goodarzi, Y.V. Heyden, F.-T. Simona, Towards better understanding of feature-selection or reduction techniques for quantitative structure-activity relationship models, TrAC Trends Anal. Chem. 42(2013) 49-63. [103] S.P. Yang, S.T. Song, Z.M. Tang, et al., Optimization of antisense drug design against conservative local motif in simulant secondary structures of HER-2 mRNA and QSAR analysis, Acta Pharmacol. Sin. 24(9) (2003) 897-902. [104] Shushen Liu, Hailing Liu, Chunsheng Yin, et al., VSMP:A novel variable selection and modeling method based on the prediction, J. Chem. Inf. Comput. Sci. 43(3) (2003) 964-969. [105] J.H. Wikel, E.R. Dow, The use of neural networks for variable selection in QSAR, Bioorg. Med. Chem. Lett. 3(4) (1993) 645-651. [106] M. Jung, J. Tak, Y. Lee, et al., Quantitative structure-activity relationship (QSAR) of tacrine derivatives against acetylcholinesterase (AChE) activity using variable selections, Bioorg. Med. Chem. Lett. 17(4) (2007) 1082. [107] F.R. Burden, Use of automatic relevance determination in QSAR studies using Bayesian neural networks, J. Chem. Inf. Comput. Sci. 40(6) (2000) 1423. [108] P.R. Duchowicz, E.A. Castro, F.M. Fernández, et al., A new search algorithm for QSPR/QSAR theories:Normal boiling points of some organic molecules, Chem. Phys. Lett. 412(4) (2005) 376-380. [109] P.R. Duchowicz, M. Fernández, J. Caballero, et al., QSAR for non-nucleoside inhibitors of HIV-1 reverse transcriptase, Bioorg. Med. Chem. 14(17) (2006) 5876-5889. [110] W. Zheng, A. Tropsha, Novel variable selection quantitative structure property relationship approach based on the k-nearest-neighbor principle, J. Chem. Inf. Comput. Sci. 40(1) (2000) 185. [111] M.C.U. Araújo, T.C.B. Saldanha, R.K.H. Galvão, et al., The successive projections algorithm for variable selection in spectroscopic multicomponent analysis, Chemom. Intell. Lab. Syst. 57(2) (2001) 65-73. [112] M. Daszykowski, I. Stanimirova, B. Walczak, et al., Improving QSAR models for the biological activity of HIV reverse transcriptase inhibitors:Aspects of outlier detection and uninformative variable elimination, Talanta 68(1) (2005) 54-60. [113] H. Kubinyi, QSAR and 3D QSAR in drug design part 1:Methodology, Drug Discov. Today 2(11) (1997) 457-467. [114] H. Kubinyi, QSAR and 3D QSAR in drug design part 2:Applications and problems, Drug Discov. Today 2(12) (1997) 538-546. [115] A. Guendouzi, S.M. Mekelleche, Prediction of the melting points of fatty acids from computed molecular descriptors:A quantitative structure-property relationship study, Chem. Phys. Lipids 165(1) (2012) 1-6. [116] E. Pourbasheer, R. Aalizadeh, J.S. Ardabili, et al., QSPR study on solubility of some fullerenes derivatives using the genetic algorithms-multiple linear regression, J. Mol. Liq. 204(2015) 162-169. [117] V.P. Solov'Ev, I. Oprisiu, G. Marcou, et al., Quantitative structure-property relationship (QSPR) modeling of Normal boiling point temperature and composition of binary azeotropes, Ind. Eng. Chem. Res. 50(24) (2015) 14162-14167. [118] A.R. Katritzky, I.B. Stoyanovaslavova, K. Tämm, et al., Application of the QSPR approach to the boiling points of azeotropes, J. Phys. Chem. A 115(15) (2011) 3475-3479. [119] S. Ajmani, S.C. Rogers, M.H. Barley, et al., Application of QSPR to mixtures, J. Chem. Inf. Model. 46(5) (2006) 2043-2055. [120] W.L. Luyben, Distillation column pressure selection, Sep. Purif. Technol. 168(2016) 62-67. [121] X. You, I. Rodriguez-Donis, V. Gerbaud, Low pressure design for reducing energy cost of extractive distillation for separating diisopropyl ether and isopropyl alcohol, Chem. Eng. Res. Des. 109(2016) 540-552. [122] W.L.Luyben,Comparisonofextractivedistillationandpressure-swingdistillation for acetone methanol separation, Comput. Chem. Eng. 50(8) (2013) 1-7. [123] V.N. Kiva, E.K. Hilmen, S. Skogestad, Azeotropic phase equilibrium diagrams:A survey, Chem. Eng. Sci. 58(10) (2003) 1903-1953. [124] Z. Lelkes, P. Lang, B. Benadda, et al., Feasibility of extractive distillation in a batch rectifier, AIChE J. 44(4) (1998) 810-822. [125] J.P. Knapp, M.F. Doherty, Minimum entrainer flows for extractive distillation:A bifurcation theoretic approach, AIChE J. 40(2) (1994) 243-268. [126] G.J.A.F. Fien, Y.A. Liu, Heuristic synthesis and shortcut design of separation processes using residue curve maps:A review, Ind. Eng. Chem. Res. 33(11) (1994) 2505-2522. [127] L.Jiménez,O.M.Wanhschafft,V.Julka,Analysisofresiduecurvemapsofreactive and extractive distillation units, Comput. Chem. Eng. 25(4-6) (2001) 635-642. [128] V. Gerbaud, J. Xavier, R.D. Ivonne, et al., Practical residue curve map analysis applied to solvent recovery in non-ideal binary mixtures by batch distillation processes, Chem. Eng. Process. 45(8) (2006) 672-683. [129] A.V. Timoshenko, E.A. Anokhina, A.V. Morgunov, et al., Application of the partially thermally coupled distillation flowsheets for the extractive distillation of ternary azeotropic mixtures, Chem. Eng. Res. Des. 104(2015) 139-155. [130] O.M. Wahnschafft, J.W. Koehler, E. Blass, et al., The product composition regions of single-feed azeotropic distillation columns, Ind. Eng. Chem. Res. 31(10) (1992) 2345-2362. [131] Z. Zhu, D. Xu, X. Liu, et al., Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation, Sep. Purif. Technol. 169(2016) 66-77. [132] J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-hill, New York, 1988. [133] S. Yuan, C. Zou, H. Yin, et al., Study on the separation of binary azeotropic mixtures by continuous extractive distillation, Chem. Eng. Res. Des. 93(2015) 113-119. [134] P. García-Herreros, J.M. Gómez, I. n D. Gil, et al., Optimization of the design and operation of an extractive distillation system for the production of fuel grade ethanol using glycerol as Entrainer, Ind. Eng. Chem. Res. 50(7) (2011) 3977-3985. [135] G. Modla, P. Lang, Removal and recovery of organic solvents from aqueous waste mixtures by extractive and pressure swing distillation, Ind. Eng. Chem. Res. 51(35) (2012) 11473-11481. [136] Y.C. Chen, B.Y. Yu, C.C. Hsu, et al., Comparison of Heteroazeotropic and extractive distillation for the dehydration of propylene glycol methyl ether, Chem. Eng. Res. Des. 111(2016) 184-195. [137] Y. Wang, G. Bu, Y. Wang, et al., Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process, Comput. Chem. Eng. 95(2016) 97-107. [138] A.A. Kiss, R.M. Ignat, Innovative single step bioethanol dehydration in an extractive dividing-wall column, Sep. Purif. Technol. 98(2012) 290-297. [139] C.E. Torres-Ortega, J.G. Segovia-Hernández, F.I. Gómez-Castro, et al., Design, optimization and controllability of an alternative process based on extractive distillation for an ethane-carbon dioxide mixture, Chem. Eng. Process. 74(2013) 55-68. [140] M. Errico, B.-G. Rong, Synthesis of new separation processes for bioethanol production by extractive distillation, Sep. Purif. Technol. 96(2012) 58-67. [141] M. Xia, B. Yu, Q. Wang, et al., Design and control of extractive Dividing-Wall column for separating Methylal-methanol mixture, Ind. Eng. Chem. Res. 51(49) (2012) 16016-16033. [142] Y. An, W. Li, Y. Li, et al., Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column, Chem. Eng. Sci. 135(2015) 166-178. [143] M. Errico, B.-G. Rong, G. Tola, et al., Optimal synthesis of distillation systems for bioethanol separation. Part 1:Extractive distillation with simple columns, Ind. Eng. Chem. Res. 52(4) (2013) 1612-1619. [144] A.A. Kiss, R.M. Ignat, Optimal economic design of an extractive distillation process for bioethanol dehydration, Energy Technol. 1(2-3) (2013) 166-170. [145] S.-J. Wang, C.-C. Yu, H.-P. Huang, Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation, Comput. Chem. Eng. 34(3) (2010) 361-373. [146] A. Avilés Martínez, J. Saucedo-Luna, J.G. Segovia-Hernandez, et al., Dehydration of bioethanol by hybrid process liquid-liquid extraction/extractive distillation, Ind. Eng. Chem. Res. 51(17) (2012) 5847-5855. [147] G. Li, P. Bai, New operation strategy for separation of ethanol-water by extractive distillation, Ind. Eng. Chem. Res. 51(6) (2012) 2723-2729. [148] Y.C. Wu, P.H.-C. Hsu, I.L. Chien, Critical assessment of the energy-saving potential of an extractive Dividing-Wall column, Ind. Eng. Chem. Res. 52(15) (2013) 5384-5399. [149] L. Sun, K. He, Y. Liu, et al., Analysis of different pressure thermally coupled extractive distillation column, Open Chem. Eng. J. 8(2014) 12-18. [150] Y.Tavan,S.Shahhosseini,S.H.Hosseini,Designandsimulationofethanerecovery process in an extractive dividing wall column, J. Clean. Prod. 72(2014) 222-229. [151] K. Liang, W. Li, H. Luo, et al., Energy-efficient extractive distillation process by combining preconcentration column and entrainer recovery column, Ind. Eng. Chem. Res. 53(17) (2014) 7121-7131. [152] K.D. Brito, G.M. Cordeiro, M.F. Figueirêdo, et al., Economic evaluation of energy saving alternatives in extractive distillation process, Comput. Chem. Eng. 93(2016) 185-196. [153] H. Luo, C.S. Bildea, A.A. Kiss, Novel heat-pump-assisted extractive distillation for bioethanol purification, Ind. Eng. Chem. Res. 54(7) (2015) 2208-2213. [154] L. Li, Y. Tu, L. Sun, et al., Enhanced efficient extractive distillation by combining heat-integrated technology and intermediate heating, Ind. Eng. Chem. Res. 55(32) (2016) 8837-8847. [155] G. Genduso, A. Amelio, E. Colombini, et al., Retrofitting of extractive distillation columns with high flux, low separation factor membranes:A way to reduce the energy demand, Chem. Eng. Res. Des. 109(2016) 127-140. [156] X. You, I. Rodriguez-Donis, V. Gerbaud, Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump, Appl. Energy 166(2016) 128-140. [157] G. Parkinson, Dividing-wall columns find greater appeal, Chem. Eng. Prog. 103(2007) 8-11. [158] Y.C. Wu, H.-Y. Lee, H.-P. Huang, et al., Energy-saving dividing-wall column design and control for heterogeneous azeotropic distillation systems, Ind. Eng. Chem. Res. 53(4) (2014) 1537-1552. [159] L. Sun, Q. Wang, L. Li, et al., Design and control of extractive dividing wall column for separating benzene/cyclohexane mixtures, Ind. Eng. Chem. Res. 53(19) (2014) 8120-8131. [160] H. Zhang, Q. Ye, J. Qin, et al., Design and control of extractive Dividing-Wall column for separating ethyl acetate-isopropyl alcohol mixture, Ind. Eng. Chem. Res. 53(3) (2013) 1189-1205. [161] M. Xia, Y. Xin, J. Luo, et al., Temperature control for extractive dividing-wall column with an adjustable vapor split:Methylal/methanol azeotrope separation, Ind. Eng. Chem. Res. 52(50) (2013) 17996-18013. [162] S. Wu, Multivariable PID control using improved state space model predictive control optimization, Ind. Eng. Chem. Res. 54(20) (2015) 5505-5513. [163] Y. Cao, J. Hu, H. Jia, et al., Comparison of pressure-swing distillation and extractive distillation with varied-diameter column in economics and dynamic control, J. Process Control 49(2017) 9-25. [164] I. Patras cu, C.S. Bildea, A.A. Kiss, Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration, Chem. Eng. Res. Des. 119(2017) 66-74. [165] E. Bristol, On a new measure of interaction for multivariable process control, IEEE Trans. Autom. Control 11(1) (2003) 133-134. [166] M. Hovd, S. Skogestad, Pairing criteria for decentralized control of unstable plants, Ind. Eng. Chem. Res. 33(9) (1994) 2134-2139. [167] M.F. Witcher, T.J. Mcavoy, Interacting control systems:Steady state and dynamic measurement of interaction, ISA Trans. 16(3) (1977) 35-41. [168] Q. Xiong, W.J. Cai, M.J. He, A practical loop pairing criterion for multivariable processes, J. Process Control 15(7) (2005) 741-747. [169] J.G. Ziegler, N.B. Nichols, Optimum setting for automatic controllers, J. Dyn. Syst. Meas. Control. 115(2B) (1993) 759-768. [170] W.L. Luyben, Tuning proportional integral derivative controllers for integrator/deadtime processes, Ind. Eng. Chem. Res. 35(10) (1996) 3480-3483. [171] S. Bouallègue, J. Haggège, M. Ayadi, et al., PID-type fuzzy logic controller tuning basedonparticleswarmoptimization, Eng. Appl. Artif. Intel.25(3)(2012)484-493. [172] J.C. Jeng, W.L. Tseng, M.S. Chiu, A one-step tuning method for PID controllers with robustness specification using plant step-response data, Chem. Eng. Res. Des. 92(3) (2014) 545-558. [173] A. Ali, S. Majhi, PID controller tuning for integrating processes, Isa T. 49(1) (2010) 70-78. [174] S. Zheng, X. Tang, B. Song, A graphical tuning method of fractional order proportional integral derivative controllers for interval fractional order plant, J. Process Control 24(11) (2014) 1691-1709. [175] J.C. Shen, New tuning method for PID controller, in:IEEE International Conference on Control Applications, 2001, pp. 459-464. [176] D. Pavkovic, S. Polak, D. Zorc, PID controller auto-tuning based on process step response and damping optimum criterion, ISA Trans. 53(1) (2014) 85-96. [177] K.D. Badgujar, S.T. Revankar, Design of fuzzy-PID controller for hydrogen production using HTPBR, in:International Conference on Nuclear Engineering, 2013(V006T016A001-V006T016A001). [178] W.L. Luyben, Effect of solvent on controllability in extractive distillation, Ind. Eng. Chem. Res. 47(13) (2008) 4425-4439. [179] Y. Wang, S. Lia |
[1] | Lei Sun, Zhongjun Zhao, Xiushan Yang, Yan Sun, Quande Li, Chunhui Luo, Qiang Zhao. Thermochemical decomposition of phosphogypsum with Fe-P slag via a solid-state reaction [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 113-119. |
[2] | Haoyu Yao, Dongxia Yan, Xingmei Lu, Qing Zhou, Yinan Bao, Junli Xu. Solubility determination and thermodynamic modeling of bis-2-hydroxyethyl terephthalate (BHET) in different solvents [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 294-300. |
[3] | Yuanjie Li, Qiuxiang Yin, Meijing Zhang, Ying Bao, Baohong Hou, Jingkang Wang, Jiting Huang, Ling Zhou. Characterization and structure analysis of the heterosolvate of erythromycin thiocyanate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 268-274. |
[4] | Nuochen Zhang, Yuande Dai, Linghao Feng, Biao Li. Study on environmentally friendly refrigerant R13I1/R152a as an alternative for R134a in automotive air conditioning system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 292-299. |
[5] | Zhijie Shen, Jingchun Min. Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 497-506. |
[6] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[7] | Lei Hu, Shunhui Tao, Junting Xian, Xiaodong Zhang, Yao Liu, Xiaojie Zheng, Xiaoqing Lin. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 230-239. |
[8] | Yabing Qi, Jun Li. Process parameters influence on zone refining and thermodynamics analysis of 1,2-diphenylethane [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 338-343. |
[9] | Wei Guo, Bo Zhang, Jie Zhang, Zhiqiang Wu, Yaowu Li, Bolun Yang. Liquid chemical looping gasification of biomass: Thermodynamic analysis on cellulose [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 79-88. |
[10] | Yonglin Li, He'an Luo, Qiuhong Ai, Kuiyi You, Fei Zhao, Wenlong Xiao. Efficient separation of phenols from coal tar with aqueous solution of amines by liquid-liquid extraction [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 180-188. |
[11] | Huan Zhou, Peng Wu, Wenxuan Li, Xingfan Wang, Kuo Zhou, Qing Hao. Thermodynamic modeling and phase diagram prediction of salt lake brine systems II. Aqueous Li+-Na+-K+-SO42- and its subsystems [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 134-149. |
[12] | Weichen Zhu, Yuxuan He, Minman Tong, Xiaoyong Lai, Shijia Liang, Xu Wang, Yanjuan Li, Xiao Yan. Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 118-124. |
[13] | Saneliswa Magagula, Jiangze Han, Xinying Liu, Baraka C. Sempuga. Targeting efficient biomass gasification [J]. Chinese Journal of Chemical Engineering, 2021, 33(5): 268-278. |
[14] | Ling Meng, Xia Gui, Zhi Yun. Static and dynamic studies of adsorption by four macroporous resins to enrich oridonin from Rabdosia rubescens [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 151-158. |
[15] | Mohammad Saood Manzar, Shamsuddeen A. Haladu, Mukarram Zubair, Nuhu Dalhat Mu'azu, Aleem Qureshi, Nawaf I. Blaisi, Thomas F. Garrison, Othman Charles S. Al Hamouz. Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 341-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||