Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (7): 1510-1522.DOI: 10.1016/j.cjche.2018.08.015
• Selected Papers on Sustainable Chemical Process Systems • Previous Articles Next Articles
Yixin Ma1, Peizhe Cui2, Yongkun Wang2, Zhaoyou Zhu2, Yinglong Wang2, Jun Gao1
Received:
2018-05-04
Online:
2019-10-14
Published:
2019-07-28
Contact:
Yinglong Wang, Jun Gao
Yixin Ma1, Peizhe Cui2, Yongkun Wang2, Zhaoyou Zhu2, Yinglong Wang2, Jun Gao1
通讯作者:
Yinglong Wang, Jun Gao
Yixin Ma, Peizhe Cui, Yongkun Wang, Zhaoyou Zhu, Yinglong Wang, Jun Gao. A review of extractive distillation from an azeotropic phenomenon for dynamic control[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1510-1522.
Yixin Ma, Peizhe Cui, Yongkun Wang, Zhaoyou Zhu, Yinglong Wang, Jun Gao. A review of extractive distillation from an azeotropic phenomenon for dynamic control[J]. 中国化学工程学报, 2019, 27(7): 1510-1522.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2018.08.015
[1] H. Li, Y. Wu, X. Li, et al., State-of-the-art of advanced distillation technologies in China, Chem. Eng. Technol. 39(5) (2016) 815-833. [2] S. David, P. Ryan Lively, Seven chemical separations to change the world, Nature 532(7600) (2016) 435. [3] S. Widagdo, W.D. Seider, Journal review. Azeotropic distillation, AIChE J. 42(1) (1996) 96-130. [4] Z. Lei, C. Li, B. Chen, Extractive distillation:A review, Sep. Purif. Rev. 32(2) (2003) 121-213. [5] S.Liang,Y.Cao,X.Liu,etal.,Insightintopressure-swingdistillationfromazeotropic phenomenon to dynamic control, Chem. Eng. Res. Des. 117(2017) 318-335. [6] G. Modla, P. Lang, Separation of an acetone methanol mixture by pressureswing batch distillation in a double-column system with and without thermal integration, Ind. Eng. Chem. Res. 49(8) (2010) 3785-3793. [7] W. Huang, H. Li, R. Wang, et al., Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol:Kinetics and reactive distillation, Chem. Eng. Process. 120(2017) 173-183. [8] X. Li, R. Wang, J. Na, et al., Reversible reaction-assisted intensification process for separating the Azeotropic mixture of Ethanediol and 1,2-Butanediol:Reactants screening, Ind. Eng. Chem. Res. 57(2) (2018) 710-717. [9] H. Li, Z. Zhao, J. Qin, et al., Reversible reaction-assisted intensification process for separating the Azeotropic mixture of Ethanediol and 1,2-Butanediol:Vapor-liquid equilibrium and economic evaluation, Ind. Eng. Chem. Res. 57(14) (2018) 5083-5092. [10] J. Prausnitz, R. Anderson, Thermodynamics of solvent selectivity in extractive distillation of hydrocarbons, AIChE J. 7(1) (1961) 96-101. [11] H. Matsuda, H. Takahara, S. Fujino, et al., Selection of entrainers for the separation of the binary azeotropic system methanol+dimethyl carbonate by extractive distillation, Fluid Phase Equilib. 310(1-2) (2011) 166-181. [12] A.Y. Sazonova, V.M. Raeva, T.V. Chelyuskina, et al., Choice of extractive agents for separating benzene-perfluorobenzene biazeotropic mixture based on thermodynamic criterion, Theor. Found. Chem. Eng. 48(2) (2014) 148-157. [13] Y. Wang, P. Cui, Y. Ma, et al., Extractive distillation and pressure-swing distillation for THF/ethanol separation, J. Chem. Technol. Biotechnol. 90(8) (2015) 1463-1472. [14] I.D. Gil, D.C. Botía, P. Ortiz, et al., Extractive distillation of acetone/methanol mixture using water asEntrainer, Ind. Eng. Chem. Res.48(10)(2009) 4858-4865. [15] Z. Bao, W. Zhang, X. Cui, et al., Design, optimization and control of extractive distillation for the separation of Trimethyl borate-methanol, Ind. Eng. Chem. Res. 53(38) (2014) 14802-14814. [16] F. Lastari, V. Pareek, M. Trebble, et al., Extractive distillation for CO2-ethane azeotrope separation, Chem. Eng. Process. 52(2012) 155-161. [17] E. Lladosa, J.B. Montón, M. Burguet, Separation of di-n-propyl ether and npropyl alcohol by extractive distillation and pressure-swing distillation:Computer simulation and economic optimization, Chem. Eng. Process. 50(11-12) (2011) 1266-1274. [18] G. Li, Y. Yu, P. Bai, Batch extractive distillation of mixture methanol-acetonitrile using aniline as a asolvent, Pol. J. Chem. Technol. 14(3) (2012) 48-53. [19] Z. Fan, X. Zhang, W. Cai, et al., Design and control of extraction distillation for dehydration of tetrahydrofuran, Chem. Eng. Technol. 36(5) (2013) 829-839. [20] S. Yang, Y. Wang, G. Bai, et al., Design and control of an extractive distillation system for benzene/acetonitrile separation using dimethyl sulfoxide as an Entrainer, Ind. Eng. Chem. Res. 52(36) (2013) 13102-13112. [21] I.D. Gil, J.M. Gómez, G. Rodríguez, Control of an extractive distillation process to dehydrate ethanol using glycerol as entrainer, Comput. Chem. Eng. 39(2012) 129-142. [22] J. Qin, Q. Ye, X. Xiong, et al., Control of benzene-cyclohexane separation system via extractive distillation using Sulfolane as Entrainer, Ind. Eng. Chem. Res. 52(31) (2013) 10754-10766. [23] Q. Wang, B. Yu, C. Xu, Design and control of distillation system for methylal/methanol separation. Part 1:Extractive distillation using DMF as an Entrainer, Ind. Eng. Chem. Res. 51(3) (2016) 1281-1292. [24] M.A.S.S. Ravagnani, M.H.M. Reis, R.M. Filho, et al., Anhydrous ethanol production by extractive distillation:A solvent case study, Process. Saf. Environ. Prot. 88(1) (2010) 67-73. [25] J.Á. Pacheco-Basulto, D. Hernández-McConville, F.O. Barroso-Muñoz, et al., Purification of bioethanol using extractive batch distillation:Simulation and experimental studies, Chem. Eng. Process. 61(2012) 30-35. [26] P. Kittisupakorn, K. Jariyaboon, W. Weerachaipichasgul, Optimal high purity acetone production in a batch extractive distillation column, Proceedings of the International MultiConference of Engineers and Computer Scientists, 1, 2013, pp. 143-147. [27] H. Luo, K. Liang, W. Li, et al., Comparison of pressure-swing distillation and extractive distillation methods for isopropyl alcohol/Diisopropyl ether separation, Ind. Eng. Chem. Res. 53(39) (2014) 15167-15182. [28] S. Tututi-Avila, A. Jiménez-Gutiérrez, J. Hahn, Control analysis of an extractive dividing-wall column used for ethanol dehydration, Chem. Eng. Process. 82(2014) 88-100. [29] H. Yu, Q. Ye, H. Xu, et al., Comparison of alternative distillation processes for the maximum-boiling ethylenediamine dehydration system, Chem. Eng. Process. 97(2015) 84-105. [30] M.T.G. Jongmans, B. Schuur, A.B. de Haan, Ionic liquid screening for ethylbenzene/styrene separation by extractive distillation, Ind. Eng. Chem. Res. 50(18) (2011) 10800-10810. [31] J. Pla-Franco, E. Lladosa, S. Loras, et al., Approach to the 1-propanol dehydration using an extractive distillation process with ethylene glycol, Chem. Eng. Process. 91(2015) 121-129. [32] X. Zhang, X. Li, G. Li, et al., Determination of an optimum entrainer for extractive distillation based on an isovolatility curve at different pressures, Sep. Purif. Technol. 201(2018) 79-95. [33] W.L. Luyben, Comparison of extractive distillation and pressure-swing distillation for acetone-methanol separation, Ind. Eng. Chem. Res. 47(8) (2008) 2696-2707. [34] U.M. García-Ventura, F.O. Barroso-Muñoz, S. Hernández, et al., Experimental study of the production of high purity ethanol using a semi-continuous extractive batch dividing wall distillation column, Chem. Eng. Process. 108(2016) 74-77. [35] K.-M. Lo, I.L. Chien, Efficient separation method for tert -butanol dehydration via extractive distillation, J. Taiwan Inst. Chem. Eng. 73(2017) 27-36. [36] I.V. Ivanov, V.A. Lotkhov, K.A. Moiseeva, et al., Mass transfer in a packed extractive distillation column, Theor. Found. Chem. Eng. 50(5) (2016) 667-677. [37] Z. Lei, R. Zhou, Z. Duan, Separating 1-butene and 1, 3-butadiene with DMF and DMF with salt by extractive distillation, J. Chem. Eng. Jpn 35(2) (2002) 211-216. [38] S.Navarrete-Contreras,M.Sánchez-Ibarra,F.O.Barroso-Muñoz,etal.,Useofglycerol as entrainer in the dehydration of bioethanol using extractive batch distillation:Simulation and experimental studies, Chem. Eng. Process. 77(2014) 38-41. [39] S. Pradhan, A. Kannan, Simulation and analysis of extractive distillation process in a valve tray column using the rate based model, Korean J. Chem. Eng. 22(3) (2005) 441-451. [40] E.Quijada-Maldonado,T.A.M.Aelmans,G.W.Meindersma,etal.,Pilotplantvalidation of a rate-based extractive distillation model for water-ethanol separation with the ionic liquid[emim] [DCA] as solvent, Chem. Eng. J. 223(3) (2013) 287-297. [41] P.D.G. Kortüm, D.-C.A. Bittel, Die Trennung primärer, sekundärer und tertiärer aromatischer Amine durch extraktive Destillation. I. Entwicklung und Prüfung einer Laboratoriumskolonne, Chem. Ing. Tech. 28(1) (1956) 40-44. [42] H. Yatim, P. Moszkowicz, M. Otterbein, et al., Dynamic simulation of a batch extractive distillation process, Comput. Chem. Eng. 17(1) (1992) S57-S62. [43] R. Düssel, J. Stichlmair, Separation of azeotropic mixtures by batch distillation using an entrainer, Comput. Chem. Eng. 19(1) (1995) 113-118. [44] P. Lang, Z. Lelkes, P. Moszkowicz, et al., Different operational policies for the batch extractive distillation, Comput. Chem. Eng. 19(1) (1995) 645-650. [45] V. Varga, E.R. Frits, V. Gerbaud, et al., Separation of azeotropes in batch extractive stripper with intermediate entrainer, Comput. Aided Chem. Eng. 21(06) (2006) 793-797. [46] I.M. Mujtaba, Optimization of batch extractive distillation processes for separating close boiling and azeotropic mixtures, Chem. Eng. Res. Des. 77(7) (1999) 588-596. [47] R.A. Cook, W.F. Fvrter, Extractive distillation employing a dissolved salt as separating agent, Can. J. Chem. Eng. 46(2) (1968) 119-123. [48] M.A.M. Hussain, P.H. Pfromm, Reducing the energy demand of cellulosic ethanol through salt extractive distillation enabled by electrodialysis, Sep. Sci. Technol. 48(10) (2013) 1518-1528. [49] X. Wang, L. Xie, P. Tian, et al., Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/N -propanol, Chem. Eng. Process. 110(2016) 172-187. [50] O.A. Deorukhkar, B.S. Deogharkar, Y.S. Mahajan, Purification of tetrahydrofuran from its aqueous azeotrope by extractive distillation:Pilot plant studies, Chem. Eng. Process. 105(2016) 79-91. [51] Y. Dong, C. Dai, Z. Lei, Extractive distillation of methylal/methanol mixture using the mixture of dimethylformamide (DMF) and ionic liquid as entrainers, Fuel 216(2018) 503-512. [52] Y. Dong, C. Dai, Z. Lei, Extractive distillation of methylal/methanol mixture using ethylene glycol as entrainer, Fluid Phase Equilib. 462(2018) 172-180. [53] I. Díaz, J. Palomar, M. Rodríguez, et al., Ionic liquids as entrainers for the separation of aromatic-aliphatic hydrocarbon mixtures by extractive distillation, Chem. Eng. Res. Des. 115(2016) 382-393. [54] C.Dai,Z.Lei,X.Xi,etal.,Extractivedistillationwithamixtureoforganicsolvent and ionic liquid as entrainer, Ind. Eng. Chem. Res. 53(40) (2014) 15786-15791. [55] J.Han,Z.Lei,Y.Dong,etal.,Processintensificationontheseparationofbenzene and thiophene by extractive distillation, AICHE J. 61(12) (2015) 4470-4480. [56] Z. Zhu, X. Geng, W. He, et al., Computer-aided screening of ionic liquids as entrainers for separating methyl acetate and methanol via extractive distillation, Ind. Eng. Chem. Res. 57(29) (2018) 9656-9664. [57] W.F. Furter, Extractive distillation by salt effect, Chem. Eng. Commun. 116(1) (1992) 35-40. [58] Z. Zhu, Y. Ri, H. Jia, et al., Process evaluation on the separation of ethyl acetate and ethanol using extractive distillation with ionic liquid, Sep. Purif. Technol. 181(2017) 44-52. [59] H.-H. Chen, M.-K. Chen, B.-C. Chen, et al., Critical assessment of using ionic liquid as Entrainer via extractive distillation, Ind. Eng. Chem. Res. 56(27) (2017) 7768-7782. [60] G. Fieg, Distillation design and control using aspen simulation. Von W. L. Luyben (page 312), Chem. Ing. Tech. 87(3) (2015) 312. [61] P. Lek-Utaiwan, B. Suphanit, P.L. Douglas, et al., Design of extractive distillation for the separation of close-boiling mixtures:Solvent selection and column optimization, Comput. Chem. Eng. 35(6) (2011) 1088-1100. [62] H. Li, J. Zhang, D. Li, et al., Monte Carlo simulations of vapour-liquid phase equilibrium and microstructure for the system containing azeotropes, Mol. Simul. 43(13-16) (2017) 1125-1133. [63] H. Li, P. Zhou, J. Zhang, et al., A theoretical guide for screening ionic liquid extractants applied in the separation of a binary alcohol-ester azeotrope through a DFT method, J. Mol. Liq. 251(2018) 51-60. [64] W. Yin, S. Ding, S. Xia, et al., Cosolvent selection for benzene cyclohexane separation in extractive distillation, J. Chem. Eng. Data 55(9) (2010) 3274-3277. [65] B. Van Dyk, I. Nieuwoudt, Design of solvents for extractive distillation, Ind. Eng. Chem. Res. 39(5) (2000) 1423-1429. [66] T. Gaudin, P. Rotureau, G. Fayet, Mixture descriptors toward the development of quantitative structure-property relationship models for the flash points of organic mixtures, Ind. Eng. Chem. Res. 54(25) (2015) 6596-6604. [67] A.A. Oliferenko, P.V. Oliferenko, J.S. Torrecilla, et al., Boiling points of ternary azeotropic mixtures modeled with the use of the universal solvation equation and neural networks, Ind. Eng. Chem. Res. 51(26) (2012) 9123-9128. [68] A. Abbasi, R. Eslamloueyan, Determination of binary diffusion coefficients of hydrocarbon mixtures using MLP and ANFIS networks based on QSPR method, Chemom. Intell. Lab. Syst. 132(6) (2014) 39-51. [69] M. Shahlaei, Descriptor selection methods in quantitative structure-activity relationship studies:A review study, Chem. Rev. 113(10) (2013) 8093-8103. [70] Y.-M. Kang, Y. Jeon, S.B. Hwang, et al., Quantitative structure-relative volatility relationship model for extractive distillation of ethylbenzene/pxylene mixtures:Application to binary and ternary mixtures as extractive agents, Bull. Kor. Chem. Soc. 37(4) (2016) 548-555. [71] Y.-M. Kang, Y. Jeon, G. Lee, et al., Quantitative structure relative volatility relationship model for extractive distillation of ethylbenzene/p-xylene mixtures, Ind. Eng. Chem. Res. 53(27) (2014) 11159-11166. [72] A.B. Pereiro, J.M.M. Araújo, J.M.S.S. Esperança, et al., Ionic liquids in separations of azeotropic systems-a review, J. Chem. Thermodyn. 46(3) (2012) 2-28. [73] H.J. Huang, S. Ramaswamy, U.W. Tschirner, et al., A review of separation technologiesincurrentandfuturebiorefineries, Sep. Purif. Technol.62(1)(2008) 1-21. [74] W.L. Luyben, I.-L. Chien, Design and Control of Distillation Systems for Separating Azeotropes, John Wiley & Sons, Hoboken New Jersey, 2011. [75] A.Górak,Z.Olujić,Distillation:EquipmentandProcesses,AcademicPress,UK,2014. [76] T.H. Li, Y. Wu, X. Li, et al., State-of-the-art of advanced distillation technologies in China, Chem. Eng. Technol. 39(5) (2016) 815-833. [77] J. Gmehling, B. Kolbe, M. Kleiber, et al., Chemical Thermodynamics for Process Simulation, Wiley-VCH, 2012. [78] F. Eckert, A. Klamt, Fast solvent screening via quantum chemistry:COSMO-RS approach, AICHE J. 48(2) (2002) 369-385. [79] N. Churi,L.E.K.Achenie,Novelmathematicalprogrammingmodelforcomputer aided molecular design, Ind. Eng. Chem. Res. 35(10) (1996) 3788-3794. [80] P.M. Harper, R. Gani, P. Kolar, et al., Computer-aided molecular design with combined molecular modeling and group contribution, Fluid Phase Equilib. 158-160(5) (1999) 337-347. [81] S. Kossack, K. Kraemer, R. Gani, et al., A systematic synthesis framework for extractive distillation processes, Chem. Eng. Res. Des. 86(7) (2008) 781-792. [82] A.I. Papadopoulos, P. Linke, A decision support grid for integrated molecular solvent design and chemical process selection, Comput. Chem. Eng. 33(1) (2009) 72-87. [83] G.M. Ostrovsky, L.E. Achenie, M. Sinha, On the solution of mixed-integer nonlinear programming models for computer aided molecular design, Comput. Chem. 26(6) (2002) 645-660. [84] B. Marrufo, S. Loras, E. Lladosa, Phase equilibria involved in the extractive distillation of cyclohexane + cyclohexene using diethyl carbonate as an Entrainer, J. Chem. Eng. Data 56(12) (2011) 4790-4796. [85] M.T.G. Jongmans, A. Londoño, S.B. Mamilla, et al., Extractant screening for the separation of dichloroacetic acid from monochloroacetic acid by extractive distillation, Sep. Purif. Technol. 98(2012) 206-215. [86] X. Dai, Q. Ye, J. Qin, et al., Energy-saving dividing-wall column design and control for benzene extraction distillation via mixed entrainer, Chem. Eng. Process. 100(2016) 49-64. [87] A.Y. Sazonova, V.M. Raeva, A.K. Frolkova, Design of extractive distillation process with mixed entrainer, Chem. Pap. 70(5) (2015) 594-601. [88] Y. Zhao, T. Zhao, H. Jia, et al., Optimization of the composition of mixed entrainer for economic extractive distillation process in view of the separation of tetrahydrofuran/ethanol/water ternary azeotrope, J. Chem. Technol. Biotechnol. 92(9) (2017) 2433-2444. [89] W.L. Luyben, Control of the maximum-boiling acetone/chloroform azeotropic distillation system, Ind. Eng. Chem. Res. 47(16) (2008) 6140-6149. [90] L. Li, L. Guo, Y. Tu, et al., Comparison of different extractive distillation processes for 2-methoxyethanol/toluene separation:Design and control, Comput. Chem. Eng. 99(2017) 117-134. [91] W.L. Luyben, Improved design of an extractive distillation system with an intermediate-boiling solvent, Sep. Purif. Technol. 156(2015) 336-347. [92] I. Rodriguez-Donis, V. Gerbaud, X. Joulia, Thermodynamic insights on the feasibility of homogeneous batch extractive distillation. 4. Azeotropic mixtures with intermediate boiling Entrainer, Ind. Eng. Chem. Res. 51(18) (2012) 6489-6501. [93] I. Rodriguez-Donis, V. Gerbaud, X. Joulia, Thermodynamic insights on the feasibility of homogeneous batch extractive distillation. 3. Azeotropic mixtures with light Entrainer, Ind. Eng. Chem. Res. 51(12) (2012) 4643-4660. [94] I. Rodriguez-Donis, V. Gerbaud, X. Joulia, Thermodynamic insights on the feasibility of homogeneous batch extractive distillation, 2. Low-relativevolatility binary mixtures with a heavy entrainer, Ind. Eng. Chem. Res. 48(7) (2009) 3560-3572. [95] W. Shen, V. Gerbaud, Extension of thermodynamic insights on batch extractive distillation to continuous operation. 2. Azeotropic mixtures with a light Entrainer, Ind. Eng. Chem. Res. 52(12) (2013) 4623-4637. [96] W. Shen, H. Benyounes, V. Gerbaud, Extension of thermodynamic insights on batch extractive distillation to continuous operation. 1. Azeotropic mixtures with a heavy Entrainer, Ind. Eng. Chem. Res. 52(12) (2013) 4606-4622. [97] N.VanDucLong,M.Lee,Optimalretrofitdesignofextractivedistillationtoenergy efficientthermallycoupleddistillationscheme, AIChE J.59(4)(2013)1175-1182. [98] A.A. Barreto, I. Rodriguez-Donis, V. Gerbaud, et al., Optimization of heterogeneous batch extractive distillation, Ind. Eng. Chem. Res. 50(9) (2011) 5204-5217. [99] G. Modla, Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer, Energy 50(2013) 103-109. [100] K. Dong, X. Liu, H. Dong, et al., Multiscale studies on ionic liquids, Chem. Rev. 117(10) (2017) 6636-6695. [101] R. Munoz, J. Monton, M. Burguet, et al., Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation:Simulation and optimization, Sep. Purif. Technol. 50(2) (2006) 175-183. [102] M. Goodarzi, Y.V. Heyden, F.-T. Simona, Towards better understanding of feature-selection or reduction techniques for quantitative structure-activity relationship models, TrAC Trends Anal. Chem. 42(2013) 49-63. [103] S.P. Yang, S.T. Song, Z.M. Tang, et al., Optimization of antisense drug design against conservative local motif in simulant secondary structures of HER-2 mRNA and QSAR analysis, Acta Pharmacol. Sin. 24(9) (2003) 897-902. [104] Shushen Liu, Hailing Liu, Chunsheng Yin, et al., VSMP:A novel variable selection and modeling method based on the prediction, J. Chem. Inf. Comput. Sci. 43(3) (2003) 964-969. [105] J.H. Wikel, E.R. Dow, The use of neural networks for variable selection in QSAR, Bioorg. Med. Chem. Lett. 3(4) (1993) 645-651. [106] M. Jung, J. Tak, Y. Lee, et al., Quantitative structure-activity relationship (QSAR) of tacrine derivatives against acetylcholinesterase (AChE) activity using variable selections, Bioorg. Med. Chem. Lett. 17(4) (2007) 1082. [107] F.R. Burden, Use of automatic relevance determination in QSAR studies using Bayesian neural networks, J. Chem. Inf. Comput. Sci. 40(6) (2000) 1423. [108] P.R. Duchowicz, E.A. Castro, F.M. Fernández, et al., A new search algorithm for QSPR/QSAR theories:Normal boiling points of some organic molecules, Chem. Phys. Lett. 412(4) (2005) 376-380. [109] P.R. Duchowicz, M. Fernández, J. Caballero, et al., QSAR for non-nucleoside inhibitors of HIV-1 reverse transcriptase, Bioorg. Med. Chem. 14(17) (2006) 5876-5889. [110] W. Zheng, A. Tropsha, Novel variable selection quantitative structure property relationship approach based on the k-nearest-neighbor principle, J. Chem. Inf. Comput. Sci. 40(1) (2000) 185. [111] M.C.U. Araújo, T.C.B. Saldanha, R.K.H. Galvão, et al., The successive projections algorithm for variable selection in spectroscopic multicomponent analysis, Chemom. Intell. Lab. Syst. 57(2) (2001) 65-73. [112] M. Daszykowski, I. Stanimirova, B. Walczak, et al., Improving QSAR models for the biological activity of HIV reverse transcriptase inhibitors:Aspects of outlier detection and uninformative variable elimination, Talanta 68(1) (2005) 54-60. [113] H. Kubinyi, QSAR and 3D QSAR in drug design part 1:Methodology, Drug Discov. Today 2(11) (1997) 457-467. [114] H. Kubinyi, QSAR and 3D QSAR in drug design part 2:Applications and problems, Drug Discov. Today 2(12) (1997) 538-546. [115] A. Guendouzi, S.M. Mekelleche, Prediction of the melting points of fatty acids from computed molecular descriptors:A quantitative structure-property relationship study, Chem. Phys. Lipids 165(1) (2012) 1-6. [116] E. Pourbasheer, R. Aalizadeh, J.S. Ardabili, et al., QSPR study on solubility of some fullerenes derivatives using the genetic algorithms-multiple linear regression, J. Mol. Liq. 204(2015) 162-169. [117] V.P. Solov'Ev, I. Oprisiu, G. Marcou, et al., Quantitative structure-property relationship (QSPR) modeling of Normal boiling point temperature and composition of binary azeotropes, Ind. Eng. Chem. Res. 50(24) (2015) 14162-14167. [118] A.R. Katritzky, I.B. Stoyanovaslavova, K. Tämm, et al., Application of the QSPR approach to the boiling points of azeotropes, J. Phys. Chem. A 115(15) (2011) 3475-3479. [119] S. Ajmani, S.C. Rogers, M.H. Barley, et al., Application of QSPR to mixtures, J. Chem. Inf. Model. 46(5) (2006) 2043-2055. [120] W.L. Luyben, Distillation column pressure selection, Sep. Purif. Technol. 168(2016) 62-67. [121] X. You, I. Rodriguez-Donis, V. Gerbaud, Low pressure design for reducing energy cost of extractive distillation for separating diisopropyl ether and isopropyl alcohol, Chem. Eng. Res. Des. 109(2016) 540-552. [122] W.L.Luyben,Comparisonofextractivedistillationandpressure-swingdistillation for acetone methanol separation, Comput. Chem. Eng. 50(8) (2013) 1-7. [123] V.N. Kiva, E.K. Hilmen, S. Skogestad, Azeotropic phase equilibrium diagrams:A survey, Chem. Eng. Sci. 58(10) (2003) 1903-1953. [124] Z. Lelkes, P. Lang, B. Benadda, et al., Feasibility of extractive distillation in a batch rectifier, AIChE J. 44(4) (1998) 810-822. [125] J.P. Knapp, M.F. Doherty, Minimum entrainer flows for extractive distillation:A bifurcation theoretic approach, AIChE J. 40(2) (1994) 243-268. [126] G.J.A.F. Fien, Y.A. Liu, Heuristic synthesis and shortcut design of separation processes using residue curve maps:A review, Ind. Eng. Chem. Res. 33(11) (1994) 2505-2522. [127] L.Jiménez,O.M.Wanhschafft,V.Julka,Analysisofresiduecurvemapsofreactive and extractive distillation units, Comput. Chem. Eng. 25(4-6) (2001) 635-642. [128] V. Gerbaud, J. Xavier, R.D. Ivonne, et al., Practical residue curve map analysis applied to solvent recovery in non-ideal binary mixtures by batch distillation processes, Chem. Eng. Process. 45(8) (2006) 672-683. [129] A.V. Timoshenko, E.A. Anokhina, A.V. Morgunov, et al., Application of the partially thermally coupled distillation flowsheets for the extractive distillation of ternary azeotropic mixtures, Chem. Eng. Res. Des. 104(2015) 139-155. [130] O.M. Wahnschafft, J.W. Koehler, E. Blass, et al., The product composition regions of single-feed azeotropic distillation columns, Ind. Eng. Chem. Res. 31(10) (1992) 2345-2362. [131] Z. Zhu, D. Xu, X. Liu, et al., Separation of acetonitrile/methanol/benzene ternary azeotrope via triple column pressure-swing distillation, Sep. Purif. Technol. 169(2016) 66-77. [132] J.M. Douglas, Conceptual Design of Chemical Processes, McGraw-hill, New York, 1988. [133] S. Yuan, C. Zou, H. Yin, et al., Study on the separation of binary azeotropic mixtures by continuous extractive distillation, Chem. Eng. Res. Des. 93(2015) 113-119. [134] P. García-Herreros, J.M. Gómez, I. n D. Gil, et al., Optimization of the design and operation of an extractive distillation system for the production of fuel grade ethanol using glycerol as Entrainer, Ind. Eng. Chem. Res. 50(7) (2011) 3977-3985. [135] G. Modla, P. Lang, Removal and recovery of organic solvents from aqueous waste mixtures by extractive and pressure swing distillation, Ind. Eng. Chem. Res. 51(35) (2012) 11473-11481. [136] Y.C. Chen, B.Y. Yu, C.C. Hsu, et al., Comparison of Heteroazeotropic and extractive distillation for the dehydration of propylene glycol methyl ether, Chem. Eng. Res. Des. 111(2016) 184-195. [137] Y. Wang, G. Bu, Y. Wang, et al., Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process, Comput. Chem. Eng. 95(2016) 97-107. [138] A.A. Kiss, R.M. Ignat, Innovative single step bioethanol dehydration in an extractive dividing-wall column, Sep. Purif. Technol. 98(2012) 290-297. [139] C.E. Torres-Ortega, J.G. Segovia-Hernández, F.I. Gómez-Castro, et al., Design, optimization and controllability of an alternative process based on extractive distillation for an ethane-carbon dioxide mixture, Chem. Eng. Process. 74(2013) 55-68. [140] M. Errico, B.-G. Rong, Synthesis of new separation processes for bioethanol production by extractive distillation, Sep. Purif. Technol. 96(2012) 58-67. [141] M. Xia, B. Yu, Q. Wang, et al., Design and control of extractive Dividing-Wall column for separating Methylal-methanol mixture, Ind. Eng. Chem. Res. 51(49) (2012) 16016-16033. [142] Y. An, W. Li, Y. Li, et al., Design/optimization of energy-saving extractive distillation process by combining preconcentration column and extractive distillation column, Chem. Eng. Sci. 135(2015) 166-178. [143] M. Errico, B.-G. Rong, G. Tola, et al., Optimal synthesis of distillation systems for bioethanol separation. Part 1:Extractive distillation with simple columns, Ind. Eng. Chem. Res. 52(4) (2013) 1612-1619. [144] A.A. Kiss, R.M. Ignat, Optimal economic design of an extractive distillation process for bioethanol dehydration, Energy Technol. 1(2-3) (2013) 166-170. [145] S.-J. Wang, C.-C. Yu, H.-P. Huang, Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation, Comput. Chem. Eng. 34(3) (2010) 361-373. [146] A. Avilés Martínez, J. Saucedo-Luna, J.G. Segovia-Hernandez, et al., Dehydration of bioethanol by hybrid process liquid-liquid extraction/extractive distillation, Ind. Eng. Chem. Res. 51(17) (2012) 5847-5855. [147] G. Li, P. Bai, New operation strategy for separation of ethanol-water by extractive distillation, Ind. Eng. Chem. Res. 51(6) (2012) 2723-2729. [148] Y.C. Wu, P.H.-C. Hsu, I.L. Chien, Critical assessment of the energy-saving potential of an extractive Dividing-Wall column, Ind. Eng. Chem. Res. 52(15) (2013) 5384-5399. [149] L. Sun, K. He, Y. Liu, et al., Analysis of different pressure thermally coupled extractive distillation column, Open Chem. Eng. J. 8(2014) 12-18. [150] Y.Tavan,S.Shahhosseini,S.H.Hosseini,Designandsimulationofethanerecovery process in an extractive dividing wall column, J. Clean. Prod. 72(2014) 222-229. [151] K. Liang, W. Li, H. Luo, et al., Energy-efficient extractive distillation process by combining preconcentration column and entrainer recovery column, Ind. Eng. Chem. Res. 53(17) (2014) 7121-7131. [152] K.D. Brito, G.M. Cordeiro, M.F. Figueirêdo, et al., Economic evaluation of energy saving alternatives in extractive distillation process, Comput. Chem. Eng. 93(2016) 185-196. [153] H. Luo, C.S. Bildea, A.A. Kiss, Novel heat-pump-assisted extractive distillation for bioethanol purification, Ind. Eng. Chem. Res. 54(7) (2015) 2208-2213. [154] L. Li, Y. Tu, L. Sun, et al., Enhanced efficient extractive distillation by combining heat-integrated technology and intermediate heating, Ind. Eng. Chem. Res. 55(32) (2016) 8837-8847. [155] G. Genduso, A. Amelio, E. Colombini, et al., Retrofitting of extractive distillation columns with high flux, low separation factor membranes:A way to reduce the energy demand, Chem. Eng. Res. Des. 109(2016) 127-140. [156] X. You, I. Rodriguez-Donis, V. Gerbaud, Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump, Appl. Energy 166(2016) 128-140. [157] G. Parkinson, Dividing-wall columns find greater appeal, Chem. Eng. Prog. 103(2007) 8-11. [158] Y.C. Wu, H.-Y. Lee, H.-P. Huang, et al., Energy-saving dividing-wall column design and control for heterogeneous azeotropic distillation systems, Ind. Eng. Chem. Res. 53(4) (2014) 1537-1552. [159] L. Sun, Q. Wang, L. Li, et al., Design and control of extractive dividing wall column for separating benzene/cyclohexane mixtures, Ind. Eng. Chem. Res. 53(19) (2014) 8120-8131. [160] H. Zhang, Q. Ye, J. Qin, et al., Design and control of extractive Dividing-Wall column for separating ethyl acetate-isopropyl alcohol mixture, Ind. Eng. Chem. Res. 53(3) (2013) 1189-1205. [161] M. Xia, Y. Xin, J. Luo, et al., Temperature control for extractive dividing-wall column with an adjustable vapor split:Methylal/methanol azeotrope separation, Ind. Eng. Chem. Res. 52(50) (2013) 17996-18013. [162] S. Wu, Multivariable PID control using improved state space model predictive control optimization, Ind. Eng. Chem. Res. 54(20) (2015) 5505-5513. [163] Y. Cao, J. Hu, H. Jia, et al., Comparison of pressure-swing distillation and extractive distillation with varied-diameter column in economics and dynamic control, J. Process Control 49(2017) 9-25. [164] I. Patras cu, C.S. Bildea, A.A. Kiss, Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration, Chem. Eng. Res. Des. 119(2017) 66-74. [165] E. Bristol, On a new measure of interaction for multivariable process control, IEEE Trans. Autom. Control 11(1) (2003) 133-134. [166] M. Hovd, S. Skogestad, Pairing criteria for decentralized control of unstable plants, Ind. Eng. Chem. Res. 33(9) (1994) 2134-2139. [167] M.F. Witcher, T.J. Mcavoy, Interacting control systems:Steady state and dynamic measurement of interaction, ISA Trans. 16(3) (1977) 35-41. [168] Q. Xiong, W.J. Cai, M.J. He, A practical loop pairing criterion for multivariable processes, J. Process Control 15(7) (2005) 741-747. [169] J.G. Ziegler, N.B. Nichols, Optimum setting for automatic controllers, J. Dyn. Syst. Meas. Control. 115(2B) (1993) 759-768. [170] W.L. Luyben, Tuning proportional integral derivative controllers for integrator/deadtime processes, Ind. Eng. Chem. Res. 35(10) (1996) 3480-3483. [171] S. Bouallègue, J. Haggège, M. Ayadi, et al., PID-type fuzzy logic controller tuning basedonparticleswarmoptimization, Eng. Appl. Artif. Intel.25(3)(2012)484-493. [172] J.C. Jeng, W.L. Tseng, M.S. Chiu, A one-step tuning method for PID controllers with robustness specification using plant step-response data, Chem. Eng. Res. Des. 92(3) (2014) 545-558. [173] A. Ali, S. Majhi, PID controller tuning for integrating processes, Isa T. 49(1) (2010) 70-78. [174] S. Zheng, X. Tang, B. Song, A graphical tuning method of fractional order proportional integral derivative controllers for interval fractional order plant, J. Process Control 24(11) (2014) 1691-1709. [175] J.C. Shen, New tuning method for PID controller, in:IEEE International Conference on Control Applications, 2001, pp. 459-464. [176] D. Pavkovic, S. Polak, D. Zorc, PID controller auto-tuning based on process step response and damping optimum criterion, ISA Trans. 53(1) (2014) 85-96. [177] K.D. Badgujar, S.T. Revankar, Design of fuzzy-PID controller for hydrogen production using HTPBR, in:International Conference on Nuclear Engineering, 2013(V006T016A001-V006T016A001). [178] W.L. Luyben, Effect of solvent on controllability in extractive distillation, Ind. Eng. Chem. Res. 47(13) (2008) 4425-4439. [179] Y. Wang, S. Lia |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[3] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[4] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[5] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[6] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[7] | Li Xia, Yule Pan, Tingting Zhao, Xiaoyan Sun, Shaohui Tao, Yushi Chen, Shuguang Xiang. Estimating heat capacities of liquid organic compounds based on elements and chemical bonds contribution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 30-38. |
[8] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 173-182. |
[9] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[10] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
[11] | Libing Yu, Qiuyan Huang, Jing Wu, Erhong Song, Beibei Xiao. Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 106-113. |
[12] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[13] | Qinggang Xu, Yasen Dai, Qing Zhao, Zhengrun Chen, Peizhe Cui, Zhaoyou Zhu, Yinglong Wang, Jun Gao, Yixin Ma. Economy, environmental assessment and energy conservation for separation of isopropanol/diisopropyl ether/water multi-azeotropes via extractive distillation coupled pervaporation process [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 353-363. |
[14] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[15] | Pengbao Lian, Lizhen Chen, Daozhen Huang, Jianxin Xu, Zishuai Xu, Cai Cao, Jiaxiang Zhao, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in eleven pure solvents [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 236-243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||