Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (9): 2391-2408.DOI: 10.1016/j.cjche.2020.03.039
• Chemical Engineering Thermodynamics • Previous Articles Next Articles
Huan Zhou, Xiaolong Gu, Yaping Dai, Jingjing Tang, Jian Guo, Guangbi Li, Xiaoqin Bai
Received:
2020-02-10
Revised:
2020-03-25
Online:
2020-10-21
Published:
2020-09-28
Contact:
Huan Zhou
Supported by:
Huan Zhou, Xiaolong Gu, Yaping Dai, Jingjing Tang, Jian Guo, Guangbi Li, Xiaoqin Bai
通讯作者:
Huan Zhou
基金资助:
Huan Zhou, Xiaolong Gu, Yaping Dai, Jingjing Tang, Jian Guo, Guangbi Li, Xiaoqin Bai. Thermodynamic modeling and phase diagram prediction of salt lake brine systems. I. Aqueous Mg2+-Ca2+-Cl- binary and ternary systems[J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2391-2408.
Huan Zhou, Xiaolong Gu, Yaping Dai, Jingjing Tang, Jian Guo, Guangbi Li, Xiaoqin Bai. Thermodynamic modeling and phase diagram prediction of salt lake brine systems. I. Aqueous Mg2+-Ca2+-Cl- binary and ternary systems[J]. 中国化学工程学报, 2020, 28(9): 2391-2408.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.03.039
[1] T.L. Deng, H. Zhou, C. Xia, Salt Water System Phase Diagram and Its Application, Chemical Industry Press, Beijing, 2013(in Chinese). [2] C. Christov, Isopiestic determination of the osmotic coefficients of an aqueous MgCl2+CaCl2 mixed solution at (25 and 50)℃, chemical equilibrium model of solution behavior and solubility in the MgCl2+H2O and MgCl2+CaCl2+H2O systems to high concentration at (25 and 50)℃, J. Chem. Eng. Data 54(2009) 627-635. [3] J.H. van't Hoff, F.B. Kenrick, H.L. Silcock (Eds.), Solubilities and inorganic and organic compounds, Pergamon Press (1979), p. 196. [4] W.R. Cooling, J.J. Shafer, in:W. Engelhardt, J. Zemann (Eds.), Formation and Substance of Salt deposits in Mineralogy and Petrography in Individual Presentations, Springer-Verlag, Berlin 1962, p. 3046. [5] C.F. Prutton, W.J. Lightfoot, Equilibria in saturated solutions, J. Am. Chem. Soc. 68(1946) 1001. [6] N.S. Kurnakov, H.L. Silcock (Eds.), Solubilities and inorganic and organic compounds, Pergamon Press, New York 1979, pp. 258-262. [7] W.J. Lightfoot, C.F. Prutton, The ternary system CaCl2-MgCl2-H2O CaCl2-KCl-H2O and MgCl2-KCl-H2O at 35℃ and 75℃, J. Am. Chem. Soc. 69(1947) 2098-2011. [8] G.O. Assarsona, Equilibria in aqueous systems containing K+, Na+, Ca2+,Mg2+ and Cl-. III. The ternary system CaCl2-MgCl2-H2O, J. Am. Chem. Soc. 72(1950) 1442-1444. [9] G.C. Sinke, E.H. Mossner, J.L. Curnutt, Enthalpies of solution and solubilities of calcium chloride and its lower hydrates, J. Chem. Thermodyn. 17(1985) 893-899. [10] W. Voigt, What we know and still not know about oceanic salts, Pure Appl. Chem. 87(11-12) (2015) 1099-1126. [11] K.S. Pitzer, Thermodynamics of electrolytes. I. Theoretical basis and general equations, J. Phys. Chem. 77(1973) 268-277. [12] K. Thomsen, Modeling electrolyte solutions with the extended universal quasichemical (UNIQUAC) model, Pure Appl. Chem. 77(3) (2005) 531-542. [13] P. Wang, A. Anderko, R.D. Springer, Modeling phase equilibria and speciation in mixed-solvent electrolyte systems:II. Liquid-liquid equilibria and properties of associating electrolyte solutions, J. Mol. Liquids 125(2006) 37-44. [14] P. Wang, A. Anderko, R.D. Young, A speciation-based model for mixed-solvent electrolyte systems, Fluid Phase Equilib. 203(2002) 141-176. [15] C.-C. Chen, H.I. Britt, J.F. Boston, Local composition model for excess Gibbs energy of electrolyte systems. Part I:Single solvent, single completely dissociated electrolyte systems, AIChE J. 28(4) (1982) 588-596. [16] C.-C. Chen, L.B. Evans, A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J. 32(3) (1986) 444-454. [17] Y. Song, C.-C. Chen, Symmetric electrolyte nonrandom two-liquid activity coefficient model, Ind. Eng. Chem. Res. 48(2009) 7788-7799. [18] K.S. Pitzer, P. Wang, J.A. Rard, S.L. Clegg, Thermodynamics of electrolytes. 13. Ionic strength dependence of higher-order terms; equations for CaCl2 and MgCl2, J. Solu. Chem. 28(4) (1999) 265-282. [19] M.S. Gruszkiewicz, J.M. Simonson, Vapor pressures and isopiestic molalities of concentrated CaCl2(aq),CaBr2(aq), and NaCl(aq) to T=523 K, J. Chem. Thermodyn. 37(2005) 906-930. [20] D.W. Zeng, H.Y. Zhou, W. Voigt, Thermodynamic consistency of solubility and vapor pressure of a binary saturated salt + water system II. CaCl2+H2O, Fluid Phase Equilibria. 253(2007) 1-11. [21] N. Hossain, S.K. Bhattacharia, C.-C. Chen, Temperature dependence of interaction parametersin electrolyte NRTL model, AIChE J. 62(4) (2016) 1244-1253. [22] Yizhuan Yan, C.-C. Chen, Thermodynamic representation of the NaCl+Na2SO4+H2O system with electrolyte NRTL model, Fluid Phase Equilib. 306(2011) 149-161. [23] S.K. Bhattacharia, C.-C. Chen, Thermodynamic modeling of KCl+H2O and KCl+NaCl+H2O systems using electrolyte NRTL model, Fluid Phase Equilib. 387(2015) 169-177. [24] S. Tanveer, C.-C. Chen, Thermodynamic modeling of aqueous Ca2+-Na+-K+-Cl- quaternary system, Fluid Phase Equilib. 409(2016) 193-206. [25] S. Tanveer, H. Zhou, C.-C. Chen, Thermodynamic model of aqueous Mg2+-Na+-K+-Cl- quaternary system, Fluid Phase Equilibria 437(2017) 56-68. [26] K.S. Pitzer, J.M. Simonson, Thermodynamics of multicomponent, miscible, ionic systems:theory and equations, J. Phys. Chem. 90(1986) 3005-3009. [27] Novotnyp Sohnelo, Densities of Aqueous Solutions of Inorganic Substances, ELSEVIER, Amsterdam, 1985. [28] H.Y. Afeefy, J.F. Liebman, S.E. Stein, Neutral thermochemical data, in:P.J. Linstrom, W.G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 2014, p.20899. (retrieved 23.7.2014). [29] D.D. Wagman, W.H. Evans, V.B. Parker, The NBS Tables of chemical thermodynamic properties. Selected Values for inorganic and C1 and C2 organic substances in SI Units, (Suppl. no. 2) J. Phys. Chem. Ref. (1982) 11. [30] J.M. Prausnitz, R.N. Lichtenthaler, E.C. Azevedo, Molecular Thermodynamics of FluidPhase Equilibria (3th), Prentice Hall, Englewood Cliffs, New Jersey, 1999. [31] F. Kuschel, J. Seidel, Osmotic and activity coefficients of aqueous K2SO4-MgSO4 and KCl-MgCl2 at 25℃, J. Chem. Eng. Data 30(1985) 440-445. [32] T. Sako, T. Hakuta, H. Yoshitome, Vapor pressures of binary (water-hydrogen chloride,-magnesium chloride, and-calcium chloride) and ternary (water-magnesium chloride-calcium chloride) aqueous solutions, J. Chem. Eng. Data 30(2) (1985) 224-228. [33] K.R. Patil, A.D. Tripathi, G. Pathak, S.S. Katti, Thermodynamic properties of aqueous electrolyte solutions.2.Vapor pressure of aqueous solutions of NaBr, NaI, KCl, KI, RbCl, CsCl, CsBr, CsI, MgCl2, CaCl2, CaBr2, CaI2, SrCl2, SrBr2, SrI2, BaCl2, and BaBr2, J. Chem. Eng. Data 36(2) (1991) 225-230. [34] X. Xu, Y. Hu, L. Wu, S. Zhang, Experimental and modeling of vapor-liquid equilibria for electrolyte solution systems, J. Chem. Eng. Data 59(11) (2014) 3741-3748. [35] I.D. Zaytsev, G.G. Aseyev, Properties of Aqueous Solutions of Electrolytes, CRC Press, Boca Raton, 1992. [36] L. Zeng, Z. Li, A new process for fuel ethanol dehydration based on modeling the phase equilibria of the anhydrous MgCl2 ethanol water system, AICHE J. 61(2) (2015) 664-676. [37] A. Seidell, Solubilities of Inorganic and Metal Organic Compounds, Fourth ed.vol. 1, D.Van Nostrand Company, Inc., Princeton, NJ, 1940387. [38] G. Perron, J.E. Desnoyers, Apparent molar volumes and heat capacities of alkaline earth chlorides in water at 25℃, Can. J. Chem. 52(1974) 3738-3741. [39] G. Perron, A. Roux, J.E. Desnoyers, Heat capacities and volumes of NaCl, MgCl2, CaCl2, and NiCl2 up to 6 molal in water, Can. J. Chem. 59(1981) 3049-3054. [40] S. Likke, L.A. Bromley, Heat capacities of aqueous NaCl, KCl, MgCl2, MgSO4 and Na2SO4 solutions between 80℃ and 200℃, J. Chem. Eng. Data 18(2) (1973) 189-195. [41] P.P. Saluja, J.C. LeBlanc, Apparent molar heat capacities and volumes of aqueous solutions of MgCl2, CaCl2, and SrCl2 at elevated temperatures, J. Chem. Eng. Data 32(1) (1987) 72-76. [42] M.E. Guendouzi, A. Dinane, A. Mounir, Water activities, osmotic and activity coefficients in aqueous chloride solutions at T=298.15 K by the hygrometric method, J. Chem. Thermodyn. 33(2001) 1059-1072. [43] J.S. Baabor, M.A. Gilchrist, E.J. Delgado, Isopiestic study of (calcium chloride C water) and (calcium chloride C magnesium chloride C water) at T=313.15 K, J. Chem. Thermodyn. 33(2001) 405-411. [44] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, Dover Publications, Inc., Mineola, NY, 2002. [45] J.A. Rard, D.G. Miller, Isopiestic determination of the osmotic and activity coefficients of aqueous MgCl2 solutions at 25℃, J. Chem. Eng. Data 26(1) (1981) 38-43. [46] M. Jelena, Milica, Osmotic and activity coefficients of[yKCl+(1-y)MgCl2] (aq) at T=298.15 K, J. Solution Chem 36(2007) 1401-1419. [47] H.F. Holmes, R.E. Mesmer, Aqueous solutions of the alkaline-earth metal chlorides at elevated temperatures. Isopiesti cmolalities and thermodynamic properties, J. Chem. Thermodyn. 28(1996) 1325-1358. [48] W.R. Harrison, E.P. Perman, Vapour pressure and heat of dilution of aqueous solutions, Trans. Faraday Soc. 23(1927) 1-22. [49] J. Ananthaswamy, G. Atkinson, Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15-373.15 K, J. Chem. Eng. Data. 30(1) (1985) 120-128. [50] P.P.S. Saluja, D.J. Jobe, J.C. LeBlanc, Apparent molar heat capacities and volumes of mixed electrolytes:[NaCl(aq)+CaCl2(aq)],[NaCl(aq)+MgCl2(aq)], and[CaCl2(aq)+MgCl2(aq)], J. Chem. Eng. Data 40(2) (1995) 398-406. [51] J.J. Spitzer, P.P. Singh, K.G. McCurdy, L.G. Hepler, Apparent molar heat capacities and volumes of aqueous electrolytes:CaCl2, Cd(NO3)2, CoCl2, Cu(ClO4)2, Mg(ClO4)2, and NiCl2, J. Solut. Chem. 7(2) (1978) 81-86. [52] H.F. Holmes, C.F. Baes, R.E. Mesmer, Isopiestic studies of aqueous solutions at elevated temperatures I. KCl,CaCl2, and MgCl2, J. Chem. Thermodyn. 10(1978) 983-996. [53] C.T. Liu, W.T. Lindsay, Thermodynamic Properties of Aqueous Solutions at High temperatures. Final Report to Office of saline Water under Contract 14(01-00D1), OSW Res. And Dev. Prog. Rep. No.722, Washington, 1971(2126). [54] A.B. Zdanovskii, E.F. Soloveva, E.I. Lyakhovskaya, Experimental Solubility Data on Salt-water systems, Vol. 1:Three-Component Systems, Book 2, 2nd ed, 1973 Khimia, Leningrad. [55] R.T. Pabalan, K.S. Pitzer, Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-H2O, Geochim. Cosmochim. Acta 51(9) (1987) 2429-2443. [56] C. Held, L.F. Cameretti, G. Sadowski, Measuring and modeling activity coefficients in aqueous amino-acid solutions, Ind. Eng. Chem. Res. 50(2011) 131-141. [57] R.F. Platford, Experimental Methods:Isopiestic, in:Activity Coeffcients in Electrolyte Solutions, CRC Press, Inc., McGraw-Hill, New York, 1995. [58] M.S. Gruszkiewicz, D.A. Palmer, R.D. Springer, Phase behavior of aqueous Na-K-MgCa-Cl-NO3 mixtures:Isopiestic measurements and thermodynamic modeling, J. Solut. Chem. 36(6) (2007) 723-765. [59] K.F. Voitkovskii, Translation of:"the Mechanical Properties of Ice" (in English from Russian), Academy of Sciences (USSR), Archived (PDF) from the Original on 10, February 2017. [60] I. Barin, O. Knacke, Thermochemical Properties of Inorganic Substances, Springer, Berlin, 1973(Supplement, 1997). [61] D. Garvin, V.B. Parker, H.J. White Jr., CODATA Thermodynamic Tables. Selections for some Compounds of Calcium and Related Mixtures:A Prototype Set of Tables, Hemisphere, Washington, DC, 1987. [62] K.S. Pitzer, C.S. Oakes, Thermodynamics of calcium chloride in concentrated aqueous solutions and in crystals, J. Chem. Eng. Data 39(1994) 553-559. [63] M.E. Guendouzi, R. Azougen, A. Benbiyi, Thermodynamic properties of the mixed electrolyte systems{yMgCl2+(1-y)NaCl}(aq)and{yMgCl2+(1-y)CaCl2}(aq)at 298.15 K, Calphad 29(2005) 114-124. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[2] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[3] | Li Xia, Yule Pan, Tingting Zhao, Xiaoyan Sun, Shaohui Tao, Yushi Chen, Shuguang Xiang. Estimating heat capacities of liquid organic compounds based on elements and chemical bonds contribution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 30-38. |
[4] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[5] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[6] | Yuanjie Li, Qiuxiang Yin, Meijing Zhang, Ying Bao, Baohong Hou, Jingkang Wang, Jiting Huang, Ling Zhou. Characterization and structure analysis of the heterosolvate of erythromycin thiocyanate [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 268-274. |
[7] | Nuochen Zhang, Yuande Dai, Linghao Feng, Biao Li. Study on environmentally friendly refrigerant R13I1/R152a as an alternative for R134a in automotive air conditioning system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 292-299. |
[8] | Huan Zhou, Peng Wu, Wenxuan Li, Xingfan Wang, Kuo Zhou, Qing Hao. Thermodynamic modeling and phase diagram prediction of salt lake brine systems II. Aqueous Li+-Na+-K+-SO42- and its subsystems [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 134-149. |
[9] | Zhenghui Liu, Jun Xiang, Xiaoli Hu, Penggao Cheng, Lei Zhang, Wei Du, Songbo Wang, Na Tang. Effects of coagulation-bath conditions on polyphenylsulfone ultrafiltration membranes [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 332-340. |
[10] | Jiaqi Ding, Nan Xu, Manh Tien Nguyen, Qi Qiao, Yao Shi, Yi He, Qing Shao. Machine learning for molecular thermodynamics [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 227-239. |
[11] | Rui Wu, Ya-Ping Wang, Lin Shao, Wei Wang, Bi-Yu Tang. Thermodynamic property of ternary compound MgCaSi: A study from ab initio Debye-Grüneisen model [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 315-322. |
[12] | Yanmin Shen, Wenju Liu, Paifeng Shi, Chao Wang. Solubility measurement and thermodynamic properties of sulfamonomethoxine in pure solvents and sulfamonomethoxine hydrate in acetone + water binary solvent at different temperature [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 196-204. |
[13] | Juanbo Liu, Xinhua Liu, Wei Ge. EMMS-based modeling of gas-solid generalized fluidization: Towards a unified phase diagram [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 27-34. |
[14] | Ruizhi Cui. Solubility measurement and prediction of phase equilibria in the quaternary system LiCl + NaCl + KCl + H2O and ternary subsystem LiCl + NaCl + H2O at 288.15 K [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2137-2141. |
[15] | Pan Wu, Li Lü, Siyang Tang, Changjun Liu, Hairong Yue, Wei Jiang, Bin Liang. The fouling properties of SiO2-CaO-P2O5 system in high-temperature rotary kiln phosphoric acid process [J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1824-1831. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||