Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (11): 2733-2745.DOI: 10.1016/j.cjche.2020.06.036
• Fluid Dynamics and Transport Phenomena • Previous Articles Next Articles
Amir Heidari
Received:
2019-10-21
Revised:
2020-06-07
Online:
2020-12-31
Published:
2020-11-28
About author:
Amir Heidari,E-mail address:amirheidari@semnan.ac.ir.
Supported by:
Amir Heidari
作者简介:
Amir Heidari,E-mail address:amirheidari@semnan.ac.ir.
基金资助:
Amir Heidari. CFD simulation of impeller shape effect on quality of mixing in two-phase gas–liquid agitated vessel[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2733-2745.
Amir Heidari. CFD simulation of impeller shape effect on quality of mixing in two-phase gas–liquid agitated vessel[J]. 中国化学工程学报, 2020, 28(11): 2733-2745.
[1] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks:Comparison of turbulence models. Part I:radial flow impellers, Can. J. Chem. Eng. 89(1) (2011) 23-82. [2] V.V. Ranade, Y. Tayalia, H. Krishnan, CFD predictions of flow near impeller blades in baffled stirred vessels:assessment of computational snapshot approach, Chem. Eng. Commun. 189(7) (2002) 895-922. [3] A. Ochieng, M.S. Onyango, Drag models, solids concentration and velocity distribution in a stirred tank, Powder Technol. 181(1) (2008) 1-8. [4] G. Montante, F. Magelli, Mixed solids distribution in stirred vessels:experiments and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 46(9) (2007) 2885-2891. [5] A.R. Khopkar, G.R. Kasat, A.B. Pandit, V.V. Ranade, Computational fluid dynamics simulation of the solid suspension in a stirred slurry reactor, Ind. Eng. Chem. Res. 45(12) (2006) 4416-4428. [6] M. Ljungqvist, A. Rasmuson, Numerical simulation of the two-phase flow in an axially stirred vessel, Chem. Eng. Res. Des. 79(5) (2001) 533-546. [7] R. Clift, W.H. Gauvin, Motion of entrained particles in gas streams, Can. J. Chem. Eng. 49(4) (1971) 439-448. [8] A. Bakker, H.E.A. Van den Akker, Single-phase flow in stirred reactors, Chem. Eng. Res. Des. 72(A4) (1994) 583-593. [9] A. Brucato, F. Grisafi, G. Montante, Particle drag coefficients in turbulent fluids, Chem. Eng. Sci. 53(18) (1998) 3295-3314. [10] D. Pinelli, G. Montante, F. Magelli, Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers, Chem. Eng. Sci. 59(15) (2004) 3081-3089. [11] G.L. Lane, M.P. Schwarz, G.M. Evans, Numerical modelling of gas-liquid flow in stirred tanks, Chem. Eng. Sci. 60(8-9 SPEC. ISS) (2005) 2203-2214. [12] A.R. Khopkar, V.V. Ranade, CFD simulation of gas-liquid stirred vessel:VC, S33, and L33 flow regimes, AIChE J 52(5) (2006) 1654-1672. [13] J.B. Joshi, N.K. Nere, C.V. Rane, B.N. Murthy, C.S. Mathpati, A.W. Patwardhan, V.V. Ranade, CFD simulation of stirred tanks:comparison of turbulence models (part Ⅱ:axial flow impellers, multiple impellers and multiphase dispersions), Can. J. Chem. Eng. 89(4) (2011) 754-816. [14] J.J. Derksen, Long-time solids suspension simulations by means of a large-eddy approach, Chem. Eng. Res. Des. 84(1 A) (2006) 38-46. [15] J.J. Derksen, Numerical simulation of solids suspension in a stirred tank, AIChE J 49(11) (2003) 2700-2714. [16] F. Sbrizzai, V. Lavezzo, R. Verzicco, M. Campolo, A. Soldati, Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor, Chem. Eng. Sci. 61(9) (2006) 2843-2851. [17] A.D. Gosman, C. Lekakou, S. Politis, R.I. Issa, M.K. Looney, Multidimensional modeling of turbulent two-phase flows in stirred vessels, AIChE J 38(12) (1992) 1946-1956. [18] G.L. Lane, M.P. Schwarz, G.M. Evans, Predicting gas-liquid flow in a mechanically stirred tank, Appl. Math. Model. 26(2) (2002) 223-235. [19] N.G. Deen, T. Solberg, B.H. Hjertager, Flow generated by an aerated Rushton impeller:two-phase PIV experiments and numerical simulations, Can. J. Chem. Eng. 80(4) (2002) 638-652. [20] A.R. Khopkar, J. Aubin, C. Xuereb, N. Le Sauze, J. Bertrand, V.V. Ranade, Gas-liquid flow generated by a pitched-blade turbine:particle image velocimetry measurements and computational fluid dynamics simulations, Ind. Eng. Chem. Res. 42(21) (2003) 5318-5332. [21] A.R. Khopkar, A.R. Rammohan, V.V. Ranade, M.P. Dudukovic, Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations, Chem. Eng. Sci. 60(8-9) (2005) 2215-2229. [22] F. Kerdouss, A. Bannari, P. Proulx, CFD modeling of gas dispersion and bubble size in a double turbine stirred tank, Chem. Eng. Sci. 61(10) (2006) 3313-3322. [23] B.N. Murthy, N.A. Deshmukh, A.W. Patwardhan, J.B. Joshi, Hollow self-inducing impellers:flow visualization and CFD simulation, Chem. Eng. Sci. 62(14) (2007) 3839-3848. [24] F. Scargiali, A. D'Orazio, F. Grisafi, A. Brucato, Modelling and simulation of gas-liquid hydrodynamics in mechanically stirred tanks, Chem. Eng. Res. Des. 85(5 A) (2007) 637-646. [25] G. Montante, D. Horn, A. Paglianti, Gas-liquid flow and bubble size distribution in stirred tanks, Chem. Eng. Sci. 63(8) (2008) 2107-2118. [26] J. Gimbun, C.D. Rielly, Z.K. Nagy, Modelling of mass transfer in gas-liquid stirred tanks agitated by Rushton turbine and CD-6 impeller:A scale-up study, Chem. Eng. Res. Des. 87(4) (2009) 437-451. [27] M. Jahoda, L. Tomášková, M. Moštěk, CFD prediction of liquid homogenisation in a gas-liquid stirred tank, Chem. Eng. Res. Des. 87(4) (2009) 460-467. [28] Q. Zhang, Y. Yong, Z.-S. Mao, C. Yang, C. Zhao, Experimental determination and numerical simulation of mixing time in a gas-liquid stirred tank, Chem. Eng. Sci. 64(12) (2009) 2926-2933. [29] Y.H. Zhang, Y.M. Yong, Z.S. Mao, C. Yang, H.Y. Sun, H.L. Wang, Numerical simulation of gas-liquid flow in a stirred tank with swirl modification, Chem. Eng. Technol. 32(8) (2009) 1266-1273. [30] Q. Zhang, C. Yang, Z.-S. Mao, J. Mu, Large Eddy simulation of turbulent flow and mixing time in a gas-liquid stirred tank, Ind. Eng. Chem. Res. 51(30) (2012) 10124-10131. [31] M. Petitti, M. Vanni, D.L. Marchisio, A. Buffo, F. Podenzani, Simulation of coalescence, break-up and mass transfer in a gas-liquid stirred tank with CQMOM, Chem. Eng. J. 228(2013) 1182-1194. [32] Y. Zhang, Y. Bai, H. Wang, CFD analysis of inter-phase forces in a bubble stirred vessel, Chem. Eng. Res. Des. 91(1) (2013) 29-35. [33] H. Wang, X. Jia, X. Wang, Z. Zhou, J. Wen, J. Zhang, CFD modeling of hydrodynamic characteristics of a gas-liquid two-phase stirred tank, Appl. Math. Model. 38(1) (2014) 63-92. [34] Y. Bao, B. Wang, M. Lin, Z. Gao, J. Yang, Influence of impeller diameter on overall gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23(6) (2015) 890-896. [35] Y. Bao, J. Yang, B. Wang, Z. Gao, Influence of impeller diameter on local gas dispersion properties in a sparged multi-impeller stirred tank, Chin. J. Chem. Eng. 23(4) (2015) 615-622. [36] N.T.A. Othman, M.P. Ngaliman, CFD simulation of gas-liquid in an agitated vessel, Indian J. Sci. Technol. 9(21) (2016) 1-6. [37] J. Sarkar, L.K. Shekhawat, V. Loomba, A.S. Rathore, CFD of mixing of multi-phase flow in a bioreactor using population balance model, Biotechnol. Prog. 32(3) (2016) 613-628. [38] P. Shi, R. Rzehak, Bubbly flow in stirred tanks:Euler-Euler/RANS modeling, Chem. Eng. Sci. 190(2018) 419-435. [39] A. Heidari, CFD simulation of operational parameters effects on mixing quality of twophase gas-liquid flow in agitated vessel, Modares Mechanical Eng. 18(8) (2018) 9-18. [40] X. Guan, X. Li, N. Yang, M. Liu, CFD simulation of gas-liquid flow in stirred tanks:effect of drag models, Chem. Eng. J. 386(2020), 121554.. [41] W.-M. Lu, S.-J. Ju, Local gas holdup, mean liquid velocity and turbulence in an aerated stirred tank using hot-film anemometry, Chem. Eng. J. 35(1) (1987) 9-17. [42] J.O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE J 1(3) (1955) 289-295. [43] W. Chtourou, M. Ammar, Z. Driss, M.S. Abid, Effect of the turbulence models on Rushton turbine generated flow in a stirred vessel, Cent. Eur. J. Eng. 1(4) (2011) 380-389. [44] F. Scargiali, Gas-Liquid Dispersions in Mechanically Agitated Contactors, PhD Thesis, University of Palermo, Palermo, Italy, 2006. [45] J.-P. Torré, D.F. Fletcher, T. Lasuye, C. Xuereb, An experimental and computational study of the vortex shape in a partially baffled agitated vessel, Chem. Eng. Sci. 62(7) (2007) 1915-1926. [46] J.-P. Torré, D.F. Fletcher, T. Lasuye, C. Xuereb, Single and multiphase CFD approaches for modelling partially baffled stirred vessels:comparison of experimental data with numerical predictions, Chem. Eng. Sci. 62(22) (2007) 6246-6262. [47] A. Buffo, M. Vanni, D.L. Marchisio, Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors, Chem. Eng. Sci. 70(2012) 31-44. [48] V. Yakhot, S.A. Orszag, Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput. 1(1) (1986) 3-51. [49] V. Yakhot, L.M. Smith, The renormalization group, the ε-expansion and derivation of turbulence models, J. Sci. Comput. 7(1) (1992) 35-61. [50] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids A:Fluid Dynamics 4(7) (1992) 1510-1520. [51] P.H. Calderbank, Physical rate processes in industrial fermentations part I:The interfacial area in gas-liquid contacting with mechanical agitation, Trans. Inst. Chem. Engrs 36(1958) 443-463. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[3] | Mingzhi Li, Zhikai Liu, Wang Yao, Chao Xu, Yangping Yu, Mei Yang, Guangwen Chen. Ultrasonic cavitation-enabled microfluidic approach toward the continuous synthesis of cesium lead halide perovskite nanocrystals [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 32-41. |
[4] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[5] | Abdelgadir Bashir Banaga, Yan-Bin Li, Zhi-Hao Li, Bao-Chang Sun, Guang-Wen Chu. Experimental investigation of the mixing efficiency via intensity of segregation along axial direction of a rotating bar reactor [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 153-159. |
[6] | Junhao Wang, Shugang Ma, Peng Chen, Zhipeng Li, Zhengming Gao, J. J. Derksen. Mixing of miscible shear-thinning fluids in a lid-driven cavity [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 112-123. |
[7] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[8] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[9] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[10] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[11] | Tian Zhang, Qingshan Huang, Shujun Geng, Aqiang Chen, Yan Liu, Haidong Zhang. Impacts of solid physical properties on the performances of a slurry external airlift loop reactor integrating mixing and separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 1-12. |
[12] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[13] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[14] | Tianpeng LiZhou, Jiajia Luo, Tiefeng Wang. Enhancement of acetylene and ethylene yields in partially decoupled oxidation of ethane by changing the composition of heat carrier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 71-78. |
[15] | Liying Chen, Junheng Guo, Wenpeng Li, Shuchun Zhao, Wei Li, Jinli Zhang. A numerical study of mixing intensification for highly viscous fluids in multistage rotor–stator mixers [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 218-230. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 372
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 410
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||