Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (11): 2785-2791.DOI: 10.1016/j.cjche.2020.07.017
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Heng Zhang, Junqi Liu, Chenyuan Liu, Tingting Wang, Wancheng Zhu
Received:
2019-12-20
Revised:
2020-06-12
Online:
2020-12-31
Published:
2020-11-28
Contact:
Heng Zhang
Supported by:
Heng Zhang, Junqi Liu, Chenyuan Liu, Tingting Wang, Wancheng Zhu
通讯作者:
Heng Zhang
基金资助:
Heng Zhang, Junqi Liu, Chenyuan Liu, Tingting Wang, Wancheng Zhu. High dispersion of heteropolyacid nanoparticles on hydrothermally Cs-modified three-dimensionally ordered macroporous SiO2 with excellent selectivity in methacrolein oxidation[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2785-2791.
Heng Zhang, Junqi Liu, Chenyuan Liu, Tingting Wang, Wancheng Zhu. High dispersion of heteropolyacid nanoparticles on hydrothermally Cs-modified three-dimensionally ordered macroporous SiO2 with excellent selectivity in methacrolein oxidation[J]. 中国化学工程学报, 2020, 28(11): 2785-2791.
[1] M.J. Darabi Mahboub, J.L. Dubois, F. Cavani, M. Rostamizadeh, G.S. Patience, Catalysis for the synthesis of methacrylic acid and methyl methacrylate, Chem. Soc. Rev. 47(2018) 7703-7738. [2] K. Nagai, New developments in the production of methyl methacrylate, Appl. Catal. A Gen. 221(2001) 367-377. [3] M. Craven, D. Xiao, C. Kunstmann-Olsen, E.F. Kozhevnikova, F. Blanc, A. Steiner, I.V. Kozhevnikov, Oxidative desulfurization of diesel fuel catalyzed by polyoxometalate immobilized on phosphazene-functionalized silica, Appl. Catal. B Environ. 231(2018) 82-91. [4] M. Chamack, A.R. Mahjoub, H. Aghayan, Cesium salts of tungsten-substituted molybdophosphoric acid immobilized onto platelet mesoporous silica:efficient catalysts for oxidative desulfurization of dibenzothiophene, Chem. Eng. J. 255(2014) 686-694. [5] R. Ghubayra, C. Nuttall, S. Hodgkiss, M. Craven, E.F. Kozhevnikova, I.V. Kozhevnikov, Oxidative desulfurization of model diesel fuel catalyzed by carbon-supported heteropoly acids, Appl. Catal. B Environ. 253(2019) 309-316. [6] F. Jing, B. Katryniok, E. Bordes-Richard, S. Paul, Improvement of the catalytic performance of supported (NH4)3HPMo11VO40 catalysts in isobutane selective oxidation, Catal. Today 203(2013) 32-39. [7] J. Ding, T. Ma, M. Cui, R. Shao, R. Guan, P. Wang, Gas phase dehydration of glycerol to acrolein over Cs2.5H0.5PW12O40/Zr-MCM-41 catalysts prepared by supercritical impregnation, Mol. Catal. 461(2018) 1-9. [8] A. Patel, V. Brahmkhatri, Kinetic study of oleic acid esterification over 12-tungstophosphoric acid catalyst anchored to different mesoporous silica supports, Fuel Process. Technol. 113(2013) 141-149. [9] S. Gopinath, P. Vinoth Kumar, P. Sahaya Murphin Kumar, K.A. Yasar Arafath, S. Sivanesan, P. Baskaralingam, Cs-tungstosilicic acid/Zr-KIT-6 for esterification of oleic acid and transesterification of non-edible oils for green diesel production, Fuel 234(2018) 824-835. [10] K.M. Parida, S. Rana, S. Mallick, D. Rath, Cesium salts of heteropoly acid immobilized mesoporous silica:an efficient catalyst for acylation of anisole, J. Colloid Interface Sci. 350(2010) 132-139. [11] Y. Li, Z. Wang, R. Chen, Y. Wang, W. Xing, J. Wang, J. Huang, The hydroxylation of benzene to phenol over heteropolyacid encapsulated in silica, Catal. Commun. 55(2014) 34-37. [12] K.H. Bhadra, G.D. Yadav, Solventless triarylmethane synthesis via hydroxyalkylation of anisole with benzaldehyde by modified heteropoly acid on mesocellular foam silica (MCF), Mol. Catal. 455(2018) 150-158. [13] T. Pinto, P. Arquillière, V. Dufaud, F. Lefebvre, Isomerization of n-hexane over PtH3PW12O40/SBA-15 bifunctional catalysts:effect of the preparation method on catalytic performance, Appl. Catal. A Gen. 528(2016) 44-51. [14] M. Kanno, T. Yasukawa, W. Ninomiya, K. Ooyachi, Y. Kamiya, Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings, J. Catal. 273(2010) 1-8. [15] M. Kanno, Y.-k. Miura, T. Yasukawa, T. Hasegawa, W. Ninomiya, K. Ooyachi, H. Imai, T. Tatsumi, Y. Kamiya, 11-Molybdo-1-vanadophosphoricacid H4PMo11VO40 supported on ammonia-modified silica as highly active and selective catalyst for oxidation of methacrolein, Catal. Commun. 13(2011) 59-62. [16] T. Blasco, A. Corma, A. Martínez, P. Martínez-Escolano, Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene:The benefit of using MCM-41 with larger pore diameters, J. Catal. 177(1998) 306-313. [17] C. Tang, H.F. Wang, Q. Zhang, Multiscale principles to boost reactivity in gasinvolving energy electrocatalysis, Acc. Chem. Res. 51(2018) 881-889. [18] X. Zhang, X. Cheng, Q. Zhang, Nanostructured energy materials for electrochemical energy conversion and storage:A review, J. Energy Chem. 25(2016) 967-984. [19] S.M. Xu, X. Liang, Z.C. Ren, K.X. Wang, J.S. Chen, Free-standing air cathodes based on 3D hierarchically porous carbon membranes:Kinetic overpotential of continuous macropores in Li-O2 batteries, Angew. Chem. Int. Ed. 57(2018) 6825-6829. [20] X. Zhou, X. Cheng, Y. Zhu, A.A. Elzatahry, A. Alghamdi, Y. Deng, D. Zhao, Ordered porous metal oxide semiconductors for gas sensing, Chin. Chem. Lett. 29(2018) 405-416. [21] C. Tang, M.-M. Titirici, Q. Zhang, A review of nanocarbons in energy electrocatalysis:Multifunctional substrates and highly active sites, J. Energy Chem. 26(2017) 1077-1093. [22] H. Arandiyan, Y. Wang, H. Sun, M. Rezaei, H. Dai, Ordered meso- and macroporous perovskite oxide catalysts for emerging applications, Chem. Commun. 54(2018) 6484-6502. [23] X. Ma, T. Wang, M. Zhang, W. Zhu, Z. Zhang, H. Zhang, Heteropoly acid supported on Cu-doped three-dimensionally ordered macroporous SiO2 as efficient catalyst for the selective oxidation of methacrolein, Catal. Lett. 148(2018) 660-670. [24] C. Marchal-Roch, R. Bayer, J.F. Moisan, A. Tézé, G. Hervé, Oxidative dehydrogenation of isobutyric acid:Characterization and modeling of vanadium containing polyoxometalate catalysts, Top. Catal. 3(1996) 407-419. [25] C. Marchal-Roch, N. Laronze, N. Guillou, A. Tézé, G. Hervé, Study of ammonium, mixed ammonium-cesium and cesium salts derived from (NH4)5[PMo11VIVO40] as isobutyric acid oxidation catalysts:Part I:Syntheses, structural characterizations and catalytic activity of the ammonium salts, Appl. Catal. A Gen. 199(2000) 33-44. [26] C. Rocchiccioli-Deltcheff, A. Aouissi, S. Launay, M. Fournier, Silica-supported 12-molybdophosphoric acid catalysts:Influence of the thermal treatments and of the Mo contents on their behavior, from IR, Raman, X-ray diffraction studies, and catalytic reactivity in the methanol oxidation, J. Mol. Catal. A Chem. 114(1996) 331-342. [27] N. Legagneux, J.-M. Basset, A. Thomas, F. Lefebvre, A. Goguet, J. Sá, C. Hardacre, Characterization of silica-supported dodecatungstic heteropolyacids as a function of their dehydroxylation temperature, Dalton Trans. (2009) 2235-2240. [28] S. Soled, S. Miseo, G. McVicker, W.E. Gates, A. Gutierrez, J. Paes, Preparation of bulk and supported heteropolyacid salts, Catal. Today 36(1997) 441-450. [29] G. Mestl, T. Ilkenhans, D. Spielbauer, M. Dieterle, O. Timpe, J. Kröhnert, F. Jentoft, H. Knözinger, R. Schlögl, Thermally and chemically induced structural transformations of Keggin-type heteropoly acid catalysts, Appl. Catal. A Gen. 210(2001) 13-34. [30] M. Langpape, J.M.M. Millet, U.S. Ozkan, M. Boudeulle, Study of cesium or cesiumtransition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts:I. Structural characterization, J. Catal. 181(1999) 80-90. [31] C. Rocchiccioli-Deltcheff, A. Aouissi, M.M. Bettahar, S. Launay, M. Fournier, Catalysis by 12-Molybdophosphates:1. Catalytic reactivity of 12-molybdophosphoric acid related to its thermal behavior investigated through IR, Raman, polarographic, and Xray diffraction studies:A comparison with 12-molybdosilicic acid, J. Catal. 164(1996) 16-27. [32] B. Viswanadham, A. Srikanth, K.V.R. Chary, Characterization and reactivity of 11-molybdo-1-vanadophosphoric acid catalyst supported on zirconia for dehydration of glycerol to acrolein, J. Chem. Sci. 126(2014) 445-454. [33] Z. Li, L. Gao, S. Zheng, Investigation of the dispersion of MoO3 onto the support of mesoporous silica MCM-41, Appl. Catal. A Gen. 236(2002) 163-171. [34] Y.L. Cao, L. Wang, L.L. Zhou, G.J. Zhang, B.H. Xu, S.J. Zhang, Cs(NH4)xH3-xPMo11VO40 catalyzed selective oxidation of methacrolein to methacrylic acid:Effects of NH4+ on the structure and catalytic activity, Ind. Eng. Chem. Res. 56(2017) 653-664. [35] M. Sun, J. Zhang, C. Cao, Q. Zhang, Y. Wang, H. Wan, Significant effect of acidity on catalytic behaviors of Cs-substituted polyoxometalates for oxidative dehydrogenation of propane, Appl. Catal. A Gen. 349(2008) 212-221. [36] B.C. Gagea, Y. Lorgouilloux, Y. Altintas, P.A. Jacobs, J.A. Martens, Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis, J. Catal. 265(2009) 99-108. [37] Y.L. Cao, L. Wang, B.H. Xu, S.J. Zhang, The Chitin/Keggin-type heteropolyacid hybrid microspheres as catalyst for oxidation of methacrolein to methacrylic acid, Chem. Eng. J. 334(2018) 1657-1667. [38] L. Zhou, L. Wang, Y. Diao, R. Yan, S. Zhang, Cesium salts supported heteropoly acid for oxidation of methacrolein to methacrylic acid, Mol. Catal. 433(2017) 153-161. [39] H. Kim, J.C. Jung, D.R. Park, S.-H. Baeck, I.K. Song, Preparation of H5PMo10V2O40(PMo10V2) catalyst immobilized on nitrogen-containing mesoporous carbon (NMC) and its application to the methacrolein oxidation, Appl. Catal. A Gen. 320(2007) 159-165. [40] S. Yasuda, A. Iwakura, J. Hirata, M. Kanno, W. Ninomiya, R. Otomo, Y. Kamiya, Strong Brønsted acid-modified chromium oxide as an efficient catalyst for the selective oxidation of methacrolein to methacrylic acid, Catal. Commun. 125(2019) 43-47. [41] L. Zhou, S. Zhang, Z. Li, J. Scott, Z. Zhang, R. Liu, J. Yun, Selective oxidation of methacrolein to methacrylic acid over H4PMo11VO40/C3N4-SBA-15, RSC Adv. 9(2019) 34065-34075. |
[1] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[2] | Wenting Fan, Fang Zhao, Ming Chen, Jian Li, Xuhong Guo. An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 85-91. |
[3] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[4] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[5] | Zijie Zhang, Qianyu Zha, Ying Liu, Zhibing Zhang, Jia Liu, Zheng Zhou. Study on the epoxidation of olefins with H2O2 catalyzed by biquaternary ammonium phosphotungstic acid [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 146-154. |
[6] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[7] | Chenyang Zhao, Yinhan Cheng, Guangfei Qu, Yongheng Yuan, Fenghui Wu, Ye Liu, Shan Liu, Junyan Li, Ping Ning. High-performance liquid-phase catalytic purification of phosphine in tail gas using Pd(II)/Cu(II) composite [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 98-108. |
[8] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[9] | Shengfeng Luo, Song Zhang, Yiping Zeng, Hui Zhang, Lili Zheng, Zhaopeng Xu. Study on oxygen transport and titanium oxidation in coating cracks under parallel gas flow based on LBM modelling [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 15-24. |
[10] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[11] | Jingran Liu, Yue Wu, Jie Tang, Tao Wang, Feng Ni, Qiumin Wu, Xijiao Yang, Ayyaz Ahmad, Naveed Ramzan, Yisheng Xu. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 89-96. |
[12] | Peiyin Chen, Yanxiong Fang, Kaihong Xie, Yao Chen, Yang Liu, Hongliang Zuo, Weijian Lu, Baoyu Liu. Lacunary silicotungstic heteropoly salts as high-performance catalysts in oxidation of cyclopentene [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 152-159. |
[13] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[14] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[15] | Da Ke, Minjia Wang, Jiancheng Ruan, Xinzhi Chen, Shaodong Zhou. Efficient, continuous oxidation of durene to pyromellitic dianhydride mediated by a V-Ti-P ternary catalyst: The remarkable doping effect [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 156-164. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 154
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 359
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||