Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (11): 2817-2831.DOI: 10.1016/j.cjche.2020.06.002
Previous Articles Next Articles
Zhenhua Wu1, Yan Nan1, Yang Zhao2, Xueying Wang2, Shouying Huang1,3, Jiafu Shi2,3
Received:
2020-01-31
Revised:
2020-06-03
Online:
2020-12-31
Published:
2020-11-28
Contact:
Jiafu Shi
Supported by:
Zhenhua Wu1, Yan Nan1, Yang Zhao2, Xueying Wang2, Shouying Huang1,3, Jiafu Shi2,3
通讯作者:
Jiafu Shi
基金资助:
Zhenhua Wu, Yan Nan, Yang Zhao, Xueying Wang, Shouying Huang, Jiafu Shi. Immobilization of carbonic anhydrase for facilitated CO2 capture and separation[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2817-2831.
Zhenhua Wu, Yan Nan, Yang Zhao, Xueying Wang, Shouying Huang, Jiafu Shi. Immobilization of carbonic anhydrase for facilitated CO2 capture and separation[J]. 中国化学工程学报, 2020, 28(11): 2817-2831.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.06.002
[1] M. Oschatz, M. Antonietti, A search for selectivity to enable CO2 capture with porous adsorbents, Energy Environ. Sci. 11(1) (2018) 57-70. [2] https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html. [3] M.L. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Carbon capture and conversion using metal-organic frameworks and MOF-based materials, Chem. Soc. Rev. 48(10) (2019) 2783-2828. [4] Q. Wang, J.Z. Luo, Z.Y. Zhong, A. Borgna, CO2 capture by solid adsorbents and their application:Current status and new trends, Energy Environ. Sci. 4(1) (2011) 42-55. [5] E.S. Sanz-Pe'rez, C.R. Murdock, S.A. Didas, C.W. Jones, Directs capture of CO2 from ambient air, Chem. Rev. 116(19) (2016) 11840-11876. [6] A. Sanna, M.R. Hall, M. Maroto-Valer, Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials, Energy Environ. Sci. 5(7) (2012) 7781-7796. [7] T.P. Bide, M.T. Styles, J. Naden, An assessment of global resources of rocks as suitable raw materials for carbon capture and storage by mineralisation, Appl. Earth Sci. 123(3) (2014) 179-195. [8] D. Nielsen, X.M. Hu, K. Daasbjerg, T. Skrydstrup, Chemically and electrochemically catalyzed conversion of CO2 to CO with follow-up utilization to value-added chemicals, Nat. Catal. 4(1) (2018) 244-254. [9] G. Sneddon, A. Greenaway, H.H.P. Yiu, The potential applications of nanoporous materials for the adsorption separation and catalytic conversion of carbon dioxide, Adv. Energy Mater. 4(10) (2014) 1301873. [10] G.K. Cui, J.J. Wang, S.J. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev. 45(15) (2016) 4307-4339. [11] Y.G. Zhang, J.Y.G. Chan, Sustainable chemistry:Imidazolium salts in biomass conversion and CO2 fixation, Energy Environ. Sci. 3(4) (2010) 408-417. [12] Y. Li, L. Lin, J.H. Yu, Applications of zeolites in sustainable chemistry, Chem. 3(6) (2017) 928-949. [13] Y. Xie, T.T. Wang, X.H. Liu, K. Zou, W.Q. Deng, Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer, Nat. Commun. 4(2013) 1960. [14] X. Feng, X.S. Ding, D.L. Jiang, Covalent organic frameworks, Chem. Soc. Rev. 41(18) (2012) 6010-6022. [15] A. Schoedel, Z. Ji, O.M. Yaghi, The role of metal-organic frameworks in a carbonneutral energy, Nat. Energy 1(2016) 16034. [16] C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion, Nat. Rev. Mater. 2(8) (2017) 17045. [17] S.B. Wang, X.C. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction, Angew. Chem. Int. Edit. 55(7) (2016) 2308-2320. [18] B.K. Kanth, J. Lee, S.P. Pack, Carbonic anhydrase:Its biocatalytic mechanisms and functional properties for efficient CO2 capture process development, Eng. Life Sci. 13(5) (2013) 422-431. [19] T. Sharma, S. Sharma, H. Kamyab, A. Kumar, A., energizing the CO2 utilization by chemo-enzymatic approaches and potentiality of carbonic anhydrases:A review, J. Clean. Prod. 247(2020) 119-138. [20] S.S.W. Effendi, I.S. Ng, The prospective and potential of carbonic anhydrase for carbon dioxide sequestration:A critical review, Process Biochem. 87(2019) 55-65. [21] B.C. Tripp, K. Smith, J.G. Ferry, Carbonic anhydrase:New insights for an ancient enzyme, J. Biol. Chem. 276(52) (2001) 48615-48618. [22] K.S. Smith, J.G. Ferry, Prokaryotic carbonic anhydrase, FEMS Microboil. Rev. 24(4) (2000) 335-366. [23] D. Park, M.S. Lee, Kinetic study of catalytic CO2 hydration by metal-substituted biomimetic carbonic anhydrase model complexes, Roy. Soc. Open Sci. 6(8) (2019) 190407. [24] S.W. Lee, S.B. Park, S.K. Jeong, K.S. Lim, S.H. Lee, M.C. trachetberg, On carbon dioxide storage based on biomineralization strategies, Micron. 41(4) (2009) 273-282. [25] L. Koziol, C.A. Valdez, S.E. Baker, E.Y. Lau, Toward a small molecule, biomimetic carbonic anhydrase model:Theoretical and experimental investigations of a panel of zinc (Ⅱ) as a-macrocyclic catalysts, Inorg. Chem. 51(12) (2012) 6803-6812. [26] C.M. Maupin, R. Mckenna, D.N. Silverman, G.A. Voth, Elucidation of the proton transport mechanism in human carbonic anhydrase Ⅱ, J. Am. Chem. Soc. 131(22) (2009) 7598-7608. [27] F.H. Arnold, The nature of chemical innovation:New enzymes by evolution, Q. Rev. Biophys. 48(4) (2015) 404-410. [28] J.R. Cherry, A.L. Fidantsef, Directed evolution of industrial enzymes:An update, Curr. Opin. Biotech. 14(2003) 438-443. [29] A.C. Warden, M. Williams, T.S. Peat, S.A. Seabrook, J. Newman, G. Dojchinov, V.S. Haritos, Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst, Nat. Commun. 6(2015) 10278. [30] B.H. Jo, T.Y. Park, H.J. Park, Y.J. Yeon, Y.J. Yoo, H.J. Cha, Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration, Sci. Rep. 6(2016) (2016) 29322. [31] B.H. Jo, Seul-K. Park, H.J. Cha, Halotolerant carbonic anhydrase with unusual N-terminal extension from marine Hydrogenovibrio marinus as novel biocatalyst for carbon sequestration under high-salt environments, J. CO2 Util. 26(2018) 415-424. [32] A. Giri, D. Pant, Carbonic anhydrase modification for carbon management, Environ. Sci. Pollut. Res. 27(2020) 1294-1318. [33] R. A. Sheldon, S. van Pelt S, Enzyme immobilization in biocatalysis:Why, what and how, Chem. Soc. Rev. 42(15) (2013) 6223-6235. [34] L.Q. Cao, L. van Langen, R.A. Sheldon, Immobilised enzymes:Carrier-bound or carrier-free? Curr. Opin. Biotech. 14(4) (2003) 387-394. [35] M. Vinoba, M. Bhagiyalakshmi, S.K. Jeong, Y.I. Yoon, S.C. Nam, Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2, Colloid. Surface. B. 90(2012) 91-96. [36] G. Jing, F. Pan, B. Lv, Z. Zhou, Immobilization of carbonic anhydrase on epoxyfunctionalized magnetic polymer microspheres for CO2 capture, Process Biochem. 50(2015) 2234-2241. [37] M.M. Li, S. Qiao, Y.L. Zheng, Y.H. Andaloussi, X. Li, Z.J. Zhang, S.Q. Ma, Y. Chen, Fabricating covalent organic framework capsules with commodious microenvironment for enzymes, J. Am. Chem. Soc. 142(14) (2020) 6675-6681. [38] W. Liang, F. Carraro, M.B. Solomon, S.G. Bell, H. Amenitsch, C.J. Sumby, N.G. White, P. Falcaro, C.J. Doonan, Enzyme encapsulation in a porous hydrogen-bonded organic framework, J. Am. Chem. Soc. 141(36) (2019) 14298-14305. [39] B.K. Shanbhag, B.Y. Liu, F. Jing, V.S. Haritos, L.Z. He, Self-assembled enzyme nanoparticles for carbon dioxide capture, Nano Lett. 16(2016) 3379-3384. [40] S.H. Zhang, Y.Q. Lu, Kinetic performance of CO2 absorption into a potassium carbonate solution promoted with the enzyme carbonic anhydrase:Comparison with a monoethanolamine solution, Chem. Eng. J. 279(2015) 335-343. [41] C. Altinkaynak, S. Tavlasoglu, N. Ozdemir, I. Ocsoy, A new generation approach in enzyme immobilization:Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability, Enzyme Microb. Tech. 93-94(2016) 105-112. [42] U. Hanefeld, L.Q. Cao, E. Magner, Enzyme immobilisation:Fundamentals and application, Chem. Soc. Rev. 42(15) (2013) 6211-6212. [43] M.B. Juan, N. Bernd, The microenvironment in immobilized enzymes:Methods of characterization and its role in determining enzyme performance, Molecules. 24(2019) 3460. [44] Y.F. Zhang, J. Ge, Z. Liu, Enhanced activity of immobilized or chemically modified enzymes, ACS Catal. 5(8) (2015) 4503-4513. [45] R.C. Rodrigues, C. Ortiz, A. berenguer-Murcia, R. Torres, R. Fernandez-Lafuente, Modifying enzyme activity and selectivity by immobilization, Chem. Soc. Rev. 42(15) (2013) 6290-6307. [46] N. Aissaoui, J. Landoulsi, L. Bergaoui, S. Boujday, J.F. Lambert, Catalytic activity and thermostability of enzymes immobilized on silanized surface:Influence of the crosslinking agent, Enzym. Microb. Technol. 52(6-7) (2013) 336-343. [47] N. Aissaoui, L. Bergaoui, S. Boujday, J.F. Lambert, C. Methivier, J. Landoulsi, Enzyme immobilization on Si lane-modified surface through short linkers:Fate of interfacial phases and impact on catalytic activity, Langmuir. 30(14) (2014) 4066-4077. [48] N.R. Mohamad, N.H.C. Marzuki, N.A. Buang, F. Huyop, R.A. Wahab, An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotec. Eq. (2015) 205-220. [49] J.F. Shi, Y.Z. Wu, S.H. Zhang, Y. Tian, D. Yang, Z.Y. Jiang, Bioinspired construction of multi-enzyme catalytic systems, Chem. Soc. Rev. 47(12) (2018) 4295-4313. [50] L.A. Estroff, Introduction:Biomineralization, Chem. Rev. 108(11) (2008) 4329-4331. [51] G. Merle, S. Fradette, E. Madore, J.E. Barralet, Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture, Langmuir. 30(23) (2014) 6915-6919. [52] X. Chen, Y. Wang, P. Wang, Peptide-induced affinity binding of carbonic anhydrase to carbon nanotubes, Langmuir. 31(1) (2015) 397-403. [53] M. Vinoba, K.S. Lim, S.H. Lee, S.K. Jeong, M. Alagar, Immobilization of human carbonic anhydrase on gold nanoparticles assembled onto amine/thiolfunctionalized mesoporous SBA-15 for biomimetic sequestration of CO2, Langmuir. 27(10) (2011) 6227-6234. [54] S. Zhang, H. Lu, Y. Lu, Enhanced stability and chemical resistance of a new nanoscale biocatalyst for accelerating CO2 absorption into a carbonate solution, Environ. Sci. Technol. 47(23) (2013) 13882-13888. [55] K.M. Woo, I. Lee, S. Hong, S. An, J. Lee, E. Oh, J. Kim, Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion, Chem. Eng. J. 276(2015) 232-239. [56] H.S. Kim, S. Hong, K.M. Woo, V. Teijeiro Seijas, S. Kim, J. Lee, J. Kim, Precipitationbased nanoscale enzyme reactor with improved loading, stability, and mass transfer for enzymatic CO2 conversion and utilization, ACS Catal. 8(7) (2018) 6526-6536. [57] M. Yoshimoto, T. Schweizer, M. Rathlef, T. Pleij, P. Walde, Immobilization of carbonic anhydrase in glass micropipettes and glass fiber filters for flow-through reactor applications, ACS Omega. 3(8) (2018) 10391-10405. [58] Y.Q. Fu, Y.B. Jiang, D. Dunphy, H.F. Xiong, S.B. Rempe, C.J. Brinker, Ultra-thin enzymatic liquid membrane for CO2 separation and capture, Nat. Commum. 9(2018) 2200. [59] A.S. Drozdov, O.E. Shapovalova, V. Ivanovski, D. Avnir, V.V. Vinogradov, Entrapment of enzymes within sol-gel-derived magnetite, Chem. Mater. 28(7) (2016) 2248-2253. [60] J. Hou, G. Dong, B. Xiao, C. Malassigne, V. Chen, Preparation of Titania based biocatalytic nanoparticles and membranes for CO2 conversion, J. Mater. Chem. A 3(7) (2015) 3332-3342. [61] D.C. Matthias, A. Ricardo, B. Marie-Pierre, S.M. Jose, Membrane bioprocesses for pharmaceutical micropollutant removal from waters, Membr. 4(4) (2014) 692-729. [62] N. Endre, Survey on biocatalytic membrane reactor and membrane aerated biofilm reactor, Curr. Org. Chem. 21(17) (2017) 1713-1724. [63] M. Uygun, V.V. Singh, K. Kaufmann, D.A. Uygun, S.D.S. de Oliveira, J. Wang, Micromotor-based biomimetic carbon dioxide sequestration:Towards mobile microscrubbers, Angew. Chem. Int. Edit. 54(44) (2015) 12900-12904. [64] Q. Liu, J. Chapman, A. Huang, N. Garapati, K.A. Sierros, C.Z. Dinu, User-tailored metal-organic frameworks as supports for carbonic anhydrase, ACS Appl. Mater. Interfaces 10(2018) 41326-41337. [65] R. Liu, X.W. Wang, J.R. Yu, Y. Wang, J. Zhu, Z.M. Hu, Surface modification of UHMWPE/fabric composite membrane via self-polymerized polydopamine followed by mPEG-NH2 immobilization, J. Appl. Polym. Sci. 135(26) (2018) 46428. [66] J. Sun, C.H. Wang, Y.Z. Wang, S.X. Ji, W.F. Liu, Immobilization of carbonic anhydrase on polyethylenimine/dopamine codeposited membranes, J. Appl. Polym. Sci. 136(2019) 47784. [67] Y.L. Xu, Y.Q. Lin, N.G.P. Chew, C. Malde, R. Wang, Biocatalytic PVDF composite hollow fiber membranes for CO2 removal in gas-liquid membrane contactor, J. Membr. Sci. 572(2019) 532-544. [68] Y. Zhang, Y. Legrand, E. Petit, C.T. Supuran, M. Barboiu, Dynamic encapsulation and activation of carbonic anhydrase in multivalent dynameric host matrices, Chem. Commun. 52(21) (2016) 4053-4055. [69] K. Maeshima, M. Yoshimoto, Preparation and characterization of carbonic anhydrase-conjugated liposomes for catalytic synthesis of calcium carbonate particles, Enzyme. Microb. Tech. 105(2017) 9-17. [70] J. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev. 5(38) (2009) 1477-1504. [71] P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C.J. Doonan, Application of metal and metal oxide nanoparticles@MOFs, Coord. Chem. Rev. 307(2016) 237-254. [72] P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A. Hill, M.J. Styles, MOF positioning technology and device fabrication, Chem. Soc. Rev. 43(2014) 5513-5560. [73] C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Largescale screening of hypothetical metal-organic frameworks, Nat. Chem. 4(2011) 83-89. [74] P. Horcajada, R. Gref, T. Baati, P.K. Allan, G. Maurin, P. Couvreur, G. Férey, R.E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chem. Rev. 112(2012) 1232-1268. [75] M. Giménez-Marqués, T. Hidalgo, C. Serre, P. Horcajada, Nanostructured metalorganic frameworks and their bio-related applications, Coord. Chem. Rev. 307(2016) 342-360. [76] K. Liang, R. Ricco, C.M. Doherty, M.J. Styles, S. Bell, N. Kirby, S. Mudie, D. Haylock, A.J. Hill, C.J. Doonan, P. Falcaro, Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules, Nat. Commun. 6(2015) 7240. [77] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341(2013) 1230444. [78] F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano Lett. 14(2014) 5761-5765. [79] C. Doonan, R. Ricco, K. Liang, D. Bradshaw, P. Falcaro, Metal-organic frameworks at the biointerface:Synthetic strategies and applications, Acc. Chem. Res. 50(2017) 1423-1432. [80] K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. Okeeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, P. Natl. Acad. Sci. USA 103(2006) 10186-10191. [81] F.S. Liao, W.S. Lo, Y.S. Hsu, C.C. Wu, S.C. Wang, F.K. Shieh, J.V. Morabito, L.Y. Chou, K. C. Wu, C.K. Tsung, shielding against unfolding by embedding enzymes in metal-organic frameworks via a de novo approach, J. Am. Chem. Soc. 19(139) (2017) 196530-196533. [82] Y.Y. Chu, J.W. Hou, C. Boyer, J. Richardson, K. Liang, J.T. Xu, Biomimetic synthesis of coordination network materials:Recent advances in MOFs and MPNs, Appl. Mater. Today 10(2018) 93-105. [83] F.K. Shieh, S.C. Wang, Chia-I Yen, C.C. Wu, Saikat Dutta, L.Y. Chou, J.V. Morabito, P. Hu, M.H. Hsu, K.C. Wu, C.K. Tsung, Imparting functionality to biocatalysts via embedding enzymes into nanopores materials by a de novo approach:Size-selective sheltering of catalase in metal-organic framework microcrystals, J. Am. Chem. Soc. 13(137) (2015) 4276-4279. [84] S.H. Zhang, M. Du, P.J. Shao, L.D. Wang, J.X. Ye, J. Chen, J.M. Chen, Carbonic anhydrase enzyme-MOFs composite with a superior catalytic performance to promote CO2 absorption into tertiary-amine solution, Environ. Sci. Technol. 52(2018) 12708-12716. [85] Y.Y. Sun, J.F. Shi, S.H. Zhang, Y.Z. Wu, S. Mei, W.L. Qian, Z.Y. Jiang, Hierarchically porous and water-tolerant metal-organic frameworks for enzyme encapsulation, Ind. Eng. Chem. Res. 58(2019) 12835-12844. [86] Y.M. Zhang, H.X. Wang, J.D. Liu, J.W. Hou, Y.T. Zhang, Enzyme-embedded metal-organic framework membranes on polymeric substrates for efficient CO2 capture, J. Mater. Chem. A 5(2017) 19954. [87] S.Z. Ren, C.H. Li, Z.L. Tan, Y. Hou, S.R. Jia, J.D. Cui, Carbonic anhydrase@ZIF-8 hydrogel composite membrane with improved recycling and stability for efficient CO2 capture, J. Agric. Food Chem. 67(2019) 3372-3379. [88] S.B. Li, M. Dharmarwardana, R.P. Welch, Y.X. Ren, C.M. Thompson, R.A. Smaldone, J. J. Gassensmith, Template-directed synthesis of porous and protective core-shell bionanoparticles, Angew. Chem. Int. Edit. 55(2016) 10691-10696. [89] N. Shamraja, R. Virendra, Magnetic-metal organic framework (magnetic-MOF):A novel platform for enzyme immobilization and nanozyme applications, Int. J boil. Macromol. 120(2018) 2293-2302. [90] G. Cheng, We. Li, L. Ha, X. Han, S. Hao, Y. Wan, Z. Wang, F. Dong, X. Zou, Y. Mao, S.Y. Zheng, Self-assembly of extracellular vesicle-like metal-organic framework nanoparticles for protection and intracellular delivery of biofunctional proteins, J. Am. Chem. Soc. 140(2018) 7282-7291. [91] T.T. Chen, J.T. Yi, Y.Y. Zhao, X. Chu, Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins, J. Am. Chem. Soc. 140(2018) 9912-9920. [92] W. Liang, R. Ricco, N.K. Maddigan, R.P. Dickinson, H. Xu, Q. Li, C.J. Sumby, S.G. Bell, P. Falcaro, C.J. Doonan, Control of structure topology and spatial distribution of biomacromolecules in protein@ZIF-8 biocomposites, Chem. Mater. 30(2018) 1069-1077. [93] G.S. Chen, S.M. Huang, X.X. Kou, S.B. Wei, S.Y. Huang, S.Q. Jiang, J. Shen, F. Zhu, G.F. Ouyang, A convenient and versatile amino-acid-boosted biomimetic strategy for the nondestructive encapsulation of biomacromolecules within metal-organic frameworks, Angew. Chem. Int. Edit. 58(2019) 1463-1467. [94] X.Z. Lian, Y. Fang, E. Joseph, Q. Wang, J.L. Li, S. Banerjee, C. Christina, X. Wang, H.C. Zhou, Enzyme-MOF (metal-organic framework) composites, 46(2017) 3386-3401. [95] K. Liang, J.J. Richardson, J.W. Cui, F. Caruso, C.J. Doonan, P. Falcaro, Metal-organic framework coatings as cytoprotective exoskeletons for living cells, Adv. Mater. 28(2016) 7910-7914. [96] W.H. Chen, M. Vazquez-Gonzalez, A. Zoabi, R. Abu-Reziq, I. Willner, Biocatalytic cascades driven by enzymes encapsulated in metal-organic framework nanoparticles, Nat. Catal. 1(2018) 689-695. [97] S. Gao, J.W. Hou, Z.Y. Deng, T.S. Wang, S. Beyer, A.G. Buzanich, J.J. Richardson, A. Rawal, R. Seidel, M.Y. Zulkifli, W.W. Li, T.D. Bennett, A.K. Cheetham, K. Liang, V. Chen, Improving the acidic stability of zeolitic imidazolate frameworks by biofunctional molecules, Chem 5(2019) 1597-1608. [98] S. Ren, Y. Feng, H. Wen, C. Li, B. Sun, J. Cui, S. Jia, Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration, Int. J. Biol. Macromol. 117(2018) 189-198. [99] J.M. Lalande, C.A. Levis, A. Tremblay, Process and a Plant for the Production of Portland Cement Clinker, US Pat., 6908507(2005). [100] M.E. Russo, G. Olivieri, A. Marzocchella, P. Salatino, P. Caramuscio, C. Cavaleiro, Post-combustion carbon capture mediated by carbonic anhydrase, Sep. Purif. Technol. 107(2013) 331-339. [101] J. Readon, T. Buchloz, M. Hulvey, J. Tuttle, A. Shaffer, D. Pulvirenti, L. Weber, K. Killian, A. Zaks, Low energy CO2 capture enabled by biocatalyst delivery system, Energy Procedia 63(2014) 301-321. [102] M. Leimbrink, T. Limberg, A.K. Kunze, M. Skiborowski, Different strategies for accelerated CO2 absorption in packed columns by application of the biocatalyst carbonic anhydrase, Energy Procedia 114(2017) 781-794. [103] M. Leimbrink, K.G. Nikoleit, R. Spitzer, S. Salmon, T. Bucholz, A. Gorak, M. Skiborowski, Enzymatic reactive absorption of CO2 in MDEA by means of an innovative biocatalyst delivery system, Chem. Eng. J. 334(2018) 1195-1205. [104] Y.L. Zhu, W.Y. Li, G.Z. Sun, Q. Tang, H.B. Bian, Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor, Int. J. Green. Gas Con. 49(2016) 290-296. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[3] | Xiaohong Zhou, Wenfeng Zhou, Wei Zhuang, Chenjie Zhu, Hanjie Ying, Hongman Zhang. Enhanced production of cytidine 5'-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 40-52. |
[4] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[5] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[6] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[7] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
[8] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[9] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS) [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231. |
[10] | Vladimir S. Derevschikov, Janna V. Veselovskaya, Anton S. Shalygin, Dmitry A. Yatsenko, Andrey Z. Sheshkovas, Oleg N. Martyanov. Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 11-20. |
[11] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[12] | Youwei Yang, Jingyu Zhang, Yueqi Gao, Busha Assaba Fayisa, Antai Li, Shouying Huang, Jing Lv, Yue Wang, Xinbin Ma. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 77-85. |
[13] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[14] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[15] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||