Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (1): 176-182.DOI: 10.1016/j.cjche.2020.05.009
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Xueyan Zou1, Xiaodong Li2, Xiaoyu Gao1, Zhihua Gao1, Zhijun Zuo1, Wei Huang1
Received:
2020-03-02
Revised:
2020-04-12
Online:
2021-04-02
Published:
2021-01-28
Contact:
Zhijun Zuo, Wei Huang
Supported by:
Xueyan Zou1, Xiaodong Li2, Xiaoyu Gao1, Zhihua Gao1, Zhijun Zuo1, Wei Huang1
通讯作者:
Zhijun Zuo, Wei Huang
基金资助:
Xueyan Zou, Xiaodong Li, Xiaoyu Gao, Zhihua Gao, Zhijun Zuo, Wei Huang. Density functional theory and kinetic Monte Carlo simulation study the strong metal-support interaction of dry reforming of methane reaction over Ni based catalysts[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 176-182.
Xueyan Zou, Xiaodong Li, Xiaoyu Gao, Zhihua Gao, Zhijun Zuo, Wei Huang. Density functional theory and kinetic Monte Carlo simulation study the strong metal-support interaction of dry reforming of methane reaction over Ni based catalysts[J]. 中国化学工程学报, 2021, 29(1): 176-182.
[1] X. Fan, Z. Liu, Y.A. Zhu, G. Tong, J. Zhang, C. Engelbrekt, J. Ulstrup, K. Zhu, X. Zhou, Tuning the composition of metastable CoxNiyMg100-x-y(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst, J. Catal. 330(2015) 106-119. [2] D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chem. Soc. Rev. 43(22) (2014) 7813-7837. [3] Z.J. Zuo, C.-F. Shen, P.J. Tan, W. Huang, Ni based on dual-support Mg-Al mixed oxides and SBA-15 catalysts for dry reforming of methane, Catal. Commun. 41(2013) 132-135. [4] J. Li, J. Li, Q. Zhu, Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/MgO catalyst, Chin. J. Chem. Eng. 26(2018) 2344-2350. [5] S. Das, M. Shah, R.K. Gupta, A. Bordoloi, Enhanced dry methane reforming over Ru decorated mesoporous silica and its kinetic study, Journal of CO2 Utilization 29(2019) 240-253. [6] J. Wang, Q. Sun, S. Chan, H. Su, The acceleration of methanol synthesis and C2 oxygenates formation on copper grain boundary from syngas, Appl. Catal. A 509(2016) 97-104. [7] J.A. Delgado, S. Castillón, D. Curulla-Ferré, C. Claver, C. Godard, Effect of pH on catalyst activity and selectivity in the aqueous Fischer-Tropsch synthesis catalyzed by cobalt nanoparticles, Catal. Commun. 71(2015) 88-92. [8] Z.J. Zuo, L. Wang, L.M. Yu, P.D. Han, W. Huang, Experimental and theoretical studies of ethanol eynthesis from eyngas over CuZnAl catalysts without other promoters, J. Phys. Chem. C 118(24) (2014) 12890-12898. [9] Y. Guo, J. Feng, W. Li, Effect of the Ni size on CH4/CO2 reforming over Ni/MgO catalyst:a DFT study, Chin. J. Chem. Eng. 25(2017) 1442-1448. [10] I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, A. Sodo, Ni/CeO2-Al2O3 catalysts for the dry reforming of methane:the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Appl. Catal. A 500(2015) 12-22. [11] Y. Li, D. Li, G. Wang, Methane decomposition to COx-free hydrogen and nano-carbon material on group 8-10 base metal catalysts:A review, Catal. Today 162(1) (2011) 1-48. [12] Z. Hou, J. Gao, J. Guo, D. Liang, H. Lou, X. Zheng, Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor, J. Catal. 250(2) (2007) 331-341. [13] Y.H. Hu, Solid-solution catalysts for CO2 reforming of methane, Catal. Today 148(3-4) (2009) 206-211. [14] Y.H. Hu, E. Ruckenstein, An optimum NiO content in the CO2 reforming of CH4 with NiO/MgO solid solution catalysts, Catal. Lett. 36(3) (2007) 145-149. [15] E. Ruckenstein, H.Y. Wang, Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts, J. Catal. 205(2) (2002) 289-293. [16] Y.H. Hu, E. Ruckenstein, High-resolution transmission electron microscopy study of carbon deposited on the NiO/MgO solid solution catalysts, J. Catal. 184(1) (1999) 298-302. [17] E. Ruckenstein, Y.H. Hu, Role of lattice oxygen during CO2 reforming of methane over NiO/MgO solid solutions, Catal. Lett. 51(3) (1998) 183-185. [18] E. Ruckenstein, Y. Hang, Hu, The effect of precursor and preparation conditions of MgO on the CO2 reforming of CH4 over NiO/MgO catalysts, Appl. Catal. A 154(1-2) (1997) 185-205. [19] L.N. Kantorovich, M.J. Gillan, Adsorption of atomic and molecular oxygen on the MgO (001) surface, Surf. Sci. 374(1-3) (1997) 373-386. [20] Y.H. Hu, E. Ruckenstein, The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4, Catal. Lett. 43(1) (1997) 71-77. [21] Q. Zhang, T. Zhang, Y. Shi, M. Wang Zhao, Q. Liu, J. Wang, K. Long, Y. Duan, P. Ning, A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane, Journal of CO2 Utilization 17(2017) 10-19. [22] J.A. Rodriguez, F. Illas, Activation of noble metals on metal-carbide surfaces:novel catalysts for CO oxidation, desulfurization and hydrogenation reactions, Phys. Chem. Chem. Phys. 14(2) (2012) 427-438. [23] H.H. Wu, J.G. Chen, Surface chemistry of transition metal carbides, Chem. Rev. 105(1) (2005) 185-212. [24] J.A. Rodriguez, P. Liu, D.J. Stacchiola, S.D. Senanayake, M.G. White, J.G. Chen, Hydrogenation of CO2 to methanol:importance of metal-oxide and metal-carbide interfaces in the activation of CO2, ACS Catal. 5(11) (2015) 6696-6706. [25] J.A. Rodriguez, J. Evans, L. Feria, A.B. Vidal, P. Liu, K. Nakamura, F. Illas, CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts:production of CO, methanol, and methane, J.Catal. 307(2013) 162-169. [26] L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts, Nature 544(2017) 80. [27] S. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu, Y. Ye, L. Lin, X. Wen, P. Liu, B. Chen, E. Crumlin, J. Guo, Z. Zuo, W. Li, J. Xie, L. Lu, C.J. Kiely, L. Gu, C. Shi, J.A. Rodriguez, D. Ma, Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction, Science 357(6349) (2017) 389-393. [28] Z. Zuo, S. Liu, Z. Wang, C. Liu, W. Huang, J. Huang, P. Liu, Dry reforming of methane on single-site Ni/MgO catalysts:importance of site confinement, ACS Catal. 8(10) (2018) 9821-9835. [29] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16) (1996) 11169-11186. [30] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24) (1994) 17953-17979. [31] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1) (1993) 558-561. [32] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electrongas correlation energy, Phys. Rev. B 45(1992) 13244-13249. [33] S. Posada-Pérez, F. Viñes, J.A. Rodríguez, F. Illas, Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces, J. Chem. Phys. 143(11) (2015) 114704. [34] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113(22) (2000) 9901-9904. [35] V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals:A pseudopotential plane-wave study, Int. J. Quantum Chem. 77(5) (2000) 895-910. [36] A. Fernández Guillermet, J. Häglund, G. Grimvall, Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure, Phys. Rev. B 45(20) (1992) 11557-11567. [37] P. Liu, J.A. Rodriguez, Water-gas-shift reaction on molybdenum carbide surfaces:essential role of the oxycarbide, J. Phys. Chem. B 110(39) (2006) 19418-19425. [38] Z.-J. Zuo, J. Li, P.-D. Han, W. Huang, XPS and DFT studies on the autoxidation process of Cu sheet at room temperature, J. Phys. Chem. C 118(35) (2014) 20332-20345. [39] S. Kattel, B. Yan, J.G. Chen, P. Liu, CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2:importance of synergy between Pt and oxide support, J. Catal. 343(2016) 115-126. [40] A.P.J. Jansen, An introduction to Monte Carlo simulations of surface reactions, Springer, New York, 2013. [41] Y.M. Liu, J.T. Liu, S.Z. Liu, J. Li, Z.H. Gao, Z.J. Zuo, W. Huang, Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111):comparison with Cu(111), Journal of CO2 Utilization 20(2017) 59-65. [42] V. K. Shen, D. W. Siderius, W. P. Krekelberg, H. W. Hatch, Eds. NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173; National Institute of Standards and Technology, Gaithersburg, MD (DOI:10.18434/T4M88Q), https://webbook.nist.gov/chemistry/. [43] B. Xing, X.Y. Pang, G.C. Wang, C-H bond activation of methane on clean and oxygen pre-covered metals:a systematic theoretical study, J. Catal. 282(1) (2011) 74-82. [44] D. Hibbitts, M. Neurock, Promotional effects of chemisorbed oxygen and hydroxide in the activation of C-H and O-H bonds over transition metal surfaces, Surf. Sci. 650(2016) 210-220. [45] Y. Guo, J. Feng, W. Li, Effect of the Ni size on CH4/CO2 reforming over Ni/MgO catalyst:A DFT study, Chin. J. Chem. Eng. 25(10) (2017) 1442-1448. [46] Y.A. Zhu, D. Chen, X.G. Zhou, W.K. Yuan, DFT studies of dry reforming of methane on Ni catalyst, Catal. Today 148(3) (2009) 260-267. [47] C. Fan, Y.A. Zhu, M.L. Yang, Z.J. Sui, X.G. Zhou, D. Chen, Density functional theoryassisted Microkinetic analysis of methane dry reforming on Ni Catalyst, Ind. Eng. Chem. Res. 54(22) (2015) 5901-5913. [48] H. Liu, B. Teng, M. Fan, B. Wang, Y. Zhang, H. Gordon Harris, CH4 dissociation on the perfect and defective MgO(001) supported Ni4, Fuel 123(2014) 285-292. [49] M.R. Li, Z. Lu, G.C. Wang, The effect of potassium on steam-methane reforming on the Ni4/Al2O3 surface:a DFT study, Catalysis Science & Technology 7(16) (2017) 3613-3625. [50] S.G. Wang, X.Y. Liao, J. Hu, D.B. Cao, Y.W. Li, J. Wang, H. Jiao, Kinetic aspect of CO2 reforming of CH4 on Ni(111):a density functional theory calculation, Surf. Sci. 601(5) (2007) 1271-1284. [51] J. Li, E. Croiset, L. Ricardez-Sandoval, Effect of metal-support interface during CH4 and H2 dissociation on Ni/γ-Al2O3:A density functional theory study, J. Phys. Chem. C 117(33) (2013) 16907-16920. [52] J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin, Z. Sun, X. Ye, X. Zheng, H. Pan, J. Zhu, S. Chen, W. Zhang, S. Wei, J. Lu, Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions, J. Am. Chem. Soc. 141(37) (2019) 14515-14519. [53] J. Li, Y. Lin, X. Pan, D. Miao, D. Ding, Y. Cui, J. Dong, X. Bao, Enhanced CO2 Methanation activity of Ni/Anatase Catalyst by tuning strong metal-support interactions, ACS Catal. 9(7) (2019) 6342-6348. [54] M. Zhu, P. Tian, R. Kurtz, T. Lunkenbein, J. Xu, R. Schlögl, I.E. Wachs, Y.-F. Han, Strong metal-support interactions between copper and iron oxide during the high-temperature water-gas shift reaction, Angew. Chem. 131(27) (2019) 9181-9185. [55] D. Guo, G.C. Wang, Partial oxidation of methane on anatase and rutile defective TiO2 supported Rh4 cluster:a density functional theory study, J. Phys. Chem.C 121(47) (2017) 26308-26320. [56] J. Yang, C.Q. Lv, Y. Guo, G.C. Wang, A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO2 supported Pd4 cluster, J. Chem. Phys. 136(10) (2012) 104107. [57] M. Mavrikakis, B. Hammer, J.K. Norskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81(13) (1998) 2819-2822. [58] M. Mamatkulov, J.S. Filhol, An ab initio study of electrochemical vs. electromechanical properties:The case of CO adsorbed on a Pt(111) surface, Phys. Chem. Chem. Phys. 13(17) (2011) 7675-7684. |
[1] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 8-15. |
[2] | Bo Yu, Guang Fu, Xinpei Li, Libo Zhang, Jing Li, Hongtao Qu, Dongbin Wang, Qingfeng Dong, Mengmeng Zhang. Arsenic removal from acidic industrial wastewater by ultrasonic activated phosphorus pentasulfide [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 46-52. |
[3] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 80-89. |
[4] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 90-98. |
[5] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[6] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[7] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[8] | Yingxi Gao, Jiayi Shi, Jie Wang, Fan Zhang, Shichao Tian, Zhiyong Zhou, Zhongqi Ren. Enrichment of nervonic acid in Acer truncatum Bunge oil by combination of two-stage molecular distillation, one-stage urea complexation and five-stage solvent crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 61-71. |
[9] | Xiaoli Li, Minghua Liu, Kang Wang, Zhiqiang Liu, Guihai Li. Data cleaning method for the process of acid production with flue gas based on improved random forest [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 72-84. |
[10] | Minjie Shi, Nianting Chen, Yue Zhao, Cheng Yang, Chao Yan. Facile wet-chemical fabrication of bi-functional coordination polymer nanosheets for high-performance energy storage and anti-corrosion engineering [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 118-127. |
[11] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[12] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[13] | Chaoyi Yin, Jingyuan Ma, Jian Qiu, Ruifang Liu, Long Ba. Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 222-230. |
[14] | Dali Gao, Chunjie Yang, Bo Yang, Yu Chen, Ruilong Deng. Minimax entropy-based co-training for fault diagnosis of blast furnace [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 231-239. |
[15] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 386
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 555
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||