[1] X. Fan, Z. Liu, Y.A. Zhu, G. Tong, J. Zhang, C. Engelbrekt, J. Ulstrup, K. Zhu, X. Zhou, Tuning the composition of metastable CoxNiyMg100-x-y(OH)(OCH3) nanoplates for optimizing robust methane dry reforming catalyst, J. Catal. 330(2015) 106-119. [2] D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chem. Soc. Rev. 43(22) (2014) 7813-7837. [3] Z.J. Zuo, C.-F. Shen, P.J. Tan, W. Huang, Ni based on dual-support Mg-Al mixed oxides and SBA-15 catalysts for dry reforming of methane, Catal. Commun. 41(2013) 132-135. [4] J. Li, J. Li, Q. Zhu, Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/MgO catalyst, Chin. J. Chem. Eng. 26(2018) 2344-2350. [5] S. Das, M. Shah, R.K. Gupta, A. Bordoloi, Enhanced dry methane reforming over Ru decorated mesoporous silica and its kinetic study, Journal of CO2 Utilization 29(2019) 240-253. [6] J. Wang, Q. Sun, S. Chan, H. Su, The acceleration of methanol synthesis and C2 oxygenates formation on copper grain boundary from syngas, Appl. Catal. A 509(2016) 97-104. [7] J.A. Delgado, S. Castillón, D. Curulla-Ferré, C. Claver, C. Godard, Effect of pH on catalyst activity and selectivity in the aqueous Fischer-Tropsch synthesis catalyzed by cobalt nanoparticles, Catal. Commun. 71(2015) 88-92. [8] Z.J. Zuo, L. Wang, L.M. Yu, P.D. Han, W. Huang, Experimental and theoretical studies of ethanol eynthesis from eyngas over CuZnAl catalysts without other promoters, J. Phys. Chem. C 118(24) (2014) 12890-12898. [9] Y. Guo, J. Feng, W. Li, Effect of the Ni size on CH4/CO2 reforming over Ni/MgO catalyst:a DFT study, Chin. J. Chem. Eng. 25(2017) 1442-1448. [10] I. Luisetto, S. Tuti, C. Battocchio, S. Lo Mastro, A. Sodo, Ni/CeO2-Al2O3 catalysts for the dry reforming of methane:the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance, Appl. Catal. A 500(2015) 12-22. [11] Y. Li, D. Li, G. Wang, Methane decomposition to COx-free hydrogen and nano-carbon material on group 8-10 base metal catalysts:A review, Catal. Today 162(1) (2011) 1-48. [12] Z. Hou, J. Gao, J. Guo, D. Liang, H. Lou, X. Zheng, Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor, J. Catal. 250(2) (2007) 331-341. [13] Y.H. Hu, Solid-solution catalysts for CO2 reforming of methane, Catal. Today 148(3-4) (2009) 206-211. [14] Y.H. Hu, E. Ruckenstein, An optimum NiO content in the CO2 reforming of CH4 with NiO/MgO solid solution catalysts, Catal. Lett. 36(3) (2007) 145-149. [15] E. Ruckenstein, H.Y. Wang, Carbon deposition and catalytic deactivation during CO2 reforming of CH4 over Co/γ-Al2O3 catalysts, J. Catal. 205(2) (2002) 289-293. [16] Y.H. Hu, E. Ruckenstein, High-resolution transmission electron microscopy study of carbon deposited on the NiO/MgO solid solution catalysts, J. Catal. 184(1) (1999) 298-302. [17] E. Ruckenstein, Y.H. Hu, Role of lattice oxygen during CO2 reforming of methane over NiO/MgO solid solutions, Catal. Lett. 51(3) (1998) 183-185. [18] E. Ruckenstein, Y. Hang, Hu, The effect of precursor and preparation conditions of MgO on the CO2 reforming of CH4 over NiO/MgO catalysts, Appl. Catal. A 154(1-2) (1997) 185-205. [19] L.N. Kantorovich, M.J. Gillan, Adsorption of atomic and molecular oxygen on the MgO (001) surface, Surf. Sci. 374(1-3) (1997) 373-386. [20] Y.H. Hu, E. Ruckenstein, The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4, Catal. Lett. 43(1) (1997) 71-77. [21] Q. Zhang, T. Zhang, Y. Shi, M. Wang Zhao, Q. Liu, J. Wang, K. Long, Y. Duan, P. Ning, A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane, Journal of CO2 Utilization 17(2017) 10-19. [22] J.A. Rodriguez, F. Illas, Activation of noble metals on metal-carbide surfaces:novel catalysts for CO oxidation, desulfurization and hydrogenation reactions, Phys. Chem. Chem. Phys. 14(2) (2012) 427-438. [23] H.H. Wu, J.G. Chen, Surface chemistry of transition metal carbides, Chem. Rev. 105(1) (2005) 185-212. [24] J.A. Rodriguez, P. Liu, D.J. Stacchiola, S.D. Senanayake, M.G. White, J.G. Chen, Hydrogenation of CO2 to methanol:importance of metal-oxide and metal-carbide interfaces in the activation of CO2, ACS Catal. 5(11) (2015) 6696-6706. [25] J.A. Rodriguez, J. Evans, L. Feria, A.B. Vidal, P. Liu, K. Nakamura, F. Illas, CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts:production of CO, methanol, and methane, J.Catal. 307(2013) 162-169. [26] L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts, Nature 544(2017) 80. [27] S. Yao, X. Zhang, W. Zhou, R. Gao, W. Xu, Y. Ye, L. Lin, X. Wen, P. Liu, B. Chen, E. Crumlin, J. Guo, Z. Zuo, W. Li, J. Xie, L. Lu, C.J. Kiely, L. Gu, C. Shi, J.A. Rodriguez, D. Ma, Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction, Science 357(6349) (2017) 389-393. [28] Z. Zuo, S. Liu, Z. Wang, C. Liu, W. Huang, J. Huang, P. Liu, Dry reforming of methane on single-site Ni/MgO catalysts:importance of site confinement, ACS Catal. 8(10) (2018) 9821-9835. [29] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16) (1996) 11169-11186. [30] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24) (1994) 17953-17979. [31] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1) (1993) 558-561. [32] J.P. Perdew, Y. Wang, Accurate and simple analytic representation of the electrongas correlation energy, Phys. Rev. B 45(1992) 13244-13249. [33] S. Posada-Pérez, F. Viñes, J.A. Rodríguez, F. Illas, Structure and electronic properties of Cu nanoclusters supported on Mo2C(001) and MoC(001) surfaces, J. Chem. Phys. 143(11) (2015) 114704. [34] G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113(22) (2000) 9901-9904. [35] V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals:A pseudopotential plane-wave study, Int. J. Quantum Chem. 77(5) (2000) 895-910. [36] A. Fernández Guillermet, J. Häglund, G. Grimvall, Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure, Phys. Rev. B 45(20) (1992) 11557-11567. [37] P. Liu, J.A. Rodriguez, Water-gas-shift reaction on molybdenum carbide surfaces:essential role of the oxycarbide, J. Phys. Chem. B 110(39) (2006) 19418-19425. [38] Z.-J. Zuo, J. Li, P.-D. Han, W. Huang, XPS and DFT studies on the autoxidation process of Cu sheet at room temperature, J. Phys. Chem. C 118(35) (2014) 20332-20345. [39] S. Kattel, B. Yan, J.G. Chen, P. Liu, CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2:importance of synergy between Pt and oxide support, J. Catal. 343(2016) 115-126. [40] A.P.J. Jansen, An introduction to Monte Carlo simulations of surface reactions, Springer, New York, 2013. [41] Y.M. Liu, J.T. Liu, S.Z. Liu, J. Li, Z.H. Gao, Z.J. Zuo, W. Huang, Reaction mechanisms of methanol synthesis from CO/CO2 hydrogenation on Cu2O(111):comparison with Cu(111), Journal of CO2 Utilization 20(2017) 59-65. [42] V. K. Shen, D. W. Siderius, W. P. Krekelberg, H. W. Hatch, Eds. NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173; National Institute of Standards and Technology, Gaithersburg, MD (DOI:10.18434/T4M88Q), https://webbook.nist.gov/chemistry/. [43] B. Xing, X.Y. Pang, G.C. Wang, C-H bond activation of methane on clean and oxygen pre-covered metals:a systematic theoretical study, J. Catal. 282(1) (2011) 74-82. [44] D. Hibbitts, M. Neurock, Promotional effects of chemisorbed oxygen and hydroxide in the activation of C-H and O-H bonds over transition metal surfaces, Surf. Sci. 650(2016) 210-220. [45] Y. Guo, J. Feng, W. Li, Effect of the Ni size on CH4/CO2 reforming over Ni/MgO catalyst:A DFT study, Chin. J. Chem. Eng. 25(10) (2017) 1442-1448. [46] Y.A. Zhu, D. Chen, X.G. Zhou, W.K. Yuan, DFT studies of dry reforming of methane on Ni catalyst, Catal. Today 148(3) (2009) 260-267. [47] C. Fan, Y.A. Zhu, M.L. Yang, Z.J. Sui, X.G. Zhou, D. Chen, Density functional theoryassisted Microkinetic analysis of methane dry reforming on Ni Catalyst, Ind. Eng. Chem. Res. 54(22) (2015) 5901-5913. [48] H. Liu, B. Teng, M. Fan, B. Wang, Y. Zhang, H. Gordon Harris, CH4 dissociation on the perfect and defective MgO(001) supported Ni4, Fuel 123(2014) 285-292. [49] M.R. Li, Z. Lu, G.C. Wang, The effect of potassium on steam-methane reforming on the Ni4/Al2O3 surface:a DFT study, Catalysis Science & Technology 7(16) (2017) 3613-3625. [50] S.G. Wang, X.Y. Liao, J. Hu, D.B. Cao, Y.W. Li, J. Wang, H. Jiao, Kinetic aspect of CO2 reforming of CH4 on Ni(111):a density functional theory calculation, Surf. Sci. 601(5) (2007) 1271-1284. [51] J. Li, E. Croiset, L. Ricardez-Sandoval, Effect of metal-support interface during CH4 and H2 dissociation on Ni/γ-Al2O3:A density functional theory study, J. Phys. Chem. C 117(33) (2013) 16907-16920. [52] J. Li, Q. Guan, H. Wu, W. Liu, Y. Lin, Z. Sun, X. Ye, X. Zheng, H. Pan, J. Zhu, S. Chen, W. Zhang, S. Wei, J. Lu, Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions, J. Am. Chem. Soc. 141(37) (2019) 14515-14519. [53] J. Li, Y. Lin, X. Pan, D. Miao, D. Ding, Y. Cui, J. Dong, X. Bao, Enhanced CO2 Methanation activity of Ni/Anatase Catalyst by tuning strong metal-support interactions, ACS Catal. 9(7) (2019) 6342-6348. [54] M. Zhu, P. Tian, R. Kurtz, T. Lunkenbein, J. Xu, R. Schlögl, I.E. Wachs, Y.-F. Han, Strong metal-support interactions between copper and iron oxide during the high-temperature water-gas shift reaction, Angew. Chem. 131(27) (2019) 9181-9185. [55] D. Guo, G.C. Wang, Partial oxidation of methane on anatase and rutile defective TiO2 supported Rh4 cluster:a density functional theory study, J. Phys. Chem.C 121(47) (2017) 26308-26320. [56] J. Yang, C.Q. Lv, Y. Guo, G.C. Wang, A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO2 supported Pd4 cluster, J. Chem. Phys. 136(10) (2012) 104107. [57] M. Mavrikakis, B. Hammer, J.K. Norskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81(13) (1998) 2819-2822. [58] M. Mamatkulov, J.S. Filhol, An ab initio study of electrochemical vs. electromechanical properties:The case of CO adsorbed on a Pt(111) surface, Phys. Chem. Chem. Phys. 13(17) (2011) 7675-7684. |