Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (1): 221-227.DOI: 10.1016/j.cjche.2020.08.008
• Catalysis, Kinetics and Reaction Engineering • Previous Articles Next Articles
Xiang Li1,2, Bo Yang2, Yaqin Wu2, Saisai Lin1, Lin Zhang1
Received:
2019-12-17
Revised:
2020-07-13
Online:
2021-04-02
Published:
2021-01-28
Contact:
Bo Yang, Yaqin Wu, Saisai Lin, Lin Zhang
Supported by:
Xiang Li1,2, Bo Yang2, Yaqin Wu2, Saisai Lin1, Lin Zhang1
通讯作者:
Bo Yang, Yaqin Wu, Saisai Lin, Lin Zhang
基金资助:
Xiang Li, Bo Yang, Yaqin Wu, Saisai Lin, Lin Zhang. Homogeneous Co3O4 film electrode with enhanced oxygen evolution electrocatalysis via surface reduction[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 221-227.
Xiang Li, Bo Yang, Yaqin Wu, Saisai Lin, Lin Zhang. Homogeneous Co3O4 film electrode with enhanced oxygen evolution electrocatalysis via surface reduction[J]. 中国化学工程学报, 2021, 29(1): 221-227.
[1] M.W. Kanan, D.G. Nocera, In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+, Science 321(2008) 1072-1075. [2] C.C.L. McCrory, S.H. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135(2013) 16977-16987. [3] Z.W. Seh, J. Kibsgaard, C.F. Dickens, I.B. Chorkendorff, J.K. Norskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis:insights into materials design, Science 355(6321) (2017) eaad4998. [4] S.P. Tong, T.M. Zhang, C. Ma, Oxygen evolution behavior of PTFE-F-PbO2 electrode in H2SO4 solution, Chin. J. Chem. Eng. 16(2008) 885-889. [5] G. Li, S. Li, M. Xiao, J. Ge, C. Liu, W. Xing, Nanoporous IrO2 catalyst with enhanced activity and durability for water oxidation owing to its micro/mesoporous structure, Nanoscale 9(2017) 9291-9298. [6] T.S. Hyun, H.L. Tuller, D.Y. Youn, H.G. Kim, I.D. Kim, Facile synthesis and electrochemical properties of RuO2 nanofibers with ionically conducting hydrous layer, J. Mater. Chem. 20(2010) 435602. [7] R. Zou, S. Wen, L. Zhang, L. Liu, D. Yue, Preparation of Rh-SiO2 fiber catalyst with superior activity and reusability by electrospinning, RSC Adv. 5(2015) 99884-99891. [8] Q.Y. Deng, G.H. He, Y. Pan, X.H. Ruan, W.J. Zheng, X.M. Yan, Bis-ammonium immobilized polystyrenes with co-catalyzing functional end groups as efficient and reusable heterogeneous catalysts for synthesis of cyclic carbonate from CO2 and epoxides, RSC Adv. 6(2016) 2217-2224. [9] X. Yang, Y. Li, L. Deng, W. Li, Z. Ren, M. Yang, X. Yang, Y. Zhu, Synthesis and characterization of an IrO2-Fe2O3 electrocatalyst for the hydrogen evolution reaction in acidic water electrolysis, RSC Adv. 7(2017) 20252-20258. [10] Y.F. Zhao, X. Zhang, X.D. Jia, G.I.N. Waterhouse, R. Shi, X.R. Zhang, F. Zhan, Y. Tao, L.Z. Wu, C.H. Tung, D. O'Hare, T.R. Zhang, Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation, Adv, Energy Mater. 8(18) (2018) 1703585. [11] X.D. Jia, X. Zhang, J.Q. Zhao, Y.F. Zhao, Y.X. Zhao, G.I.N. Waterhouse, R. Shi, L.Z. Wu, C.H. Tung, T.R. Zhang, Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation, J. Energy Chem. 34(2019) 57-63. [12] J.Y. Wang, T. Ouyang, N. Li, T.Y. Ma, Z.Q. Liu, S, N co-doped carbon nanotube-encapsulated core-shelled CoS2@Co nanoparticles:Efficient and stable bifunctional catalysts for overall water splitting, Sci. Bull. 63(2018) 1130-1140. [13] M.S. Ahmed, B. Choi, Y.B. Kim, Development of highly active bifunctional electrocatalyst using Co3O4 on carbon nanotubes for oxygen reduction and oxygen evolution, Sci. Rep. 8(2018) 2543. [14] A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech, J.F. de Araujo, T. Reier, H. Dau, P. Strasser, Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution, Nat. Commun. 6(2015) 8625. [15] C.W. Tung, Y.Y. Hsu, Y.P. Shen, Y. Zheng, T.S. Chan, H.S. Sheu, Y.C. Cheng, H.M. Chen, Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution, Nat. Commun. 6(2015) 8106. [16] X. Xie, Y. Li, Z.Q. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods, Nature 458(2009) 746-749. [17] N. Xu, Y. Liu, X. Zhang, X. Li, A. Li, J. Qiao, J. Zhang, Self-assembly formation of bifunctional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery, Sci. Rep. 6(2016) 33590. [18] J.G. McAlpin, Y. Surendranath, M. Dinca, T.A. Stich, S.A. Stoian, W.H. Casey, D.G. Nocera, R.D. Britt, EPR evidence for Co(IV) species produced during water oxidation at neutral pH, J. Am. Chem. Soc. 132(2010) 6882. [19] A. Gasparotto, D. Barreca, D. Bekermann, A. Devi, R.A. Fischer, P. Fornasiero, V. Gombac, O.I. Lebedev, C. Maccato, T. Montini, G. Van Tendeloo, E. Tondello, Fdoped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol, J. Am. Chem. Soc. 133(2011) 19362-19365. [20] H.T. Wang, W. Wang, M. Asif, Y. Yu, Z.Y. Wang, J.L. Wang, H.F. Liu, J.W. Xiao, Cobalt ion-coordinated self-assembly synthesis of nitrogen-doped ordered mesoporous carbon nanosheets for efficiently catalyzing oxygen reduction, Nanoscale 9(2017) 15534-15541. [21] Y.J. Sa, K. Kwon, J.Y. Cheon, F. Kleitz, S.H. Joo, Ordered mesoporous Co3O4 spinels as stable, bifunctional, noble metal-free oxygen electrocatalysts, J. Mater. Chem. A 34(1) (2013) 9992-10001. [22] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction, Nat. Mater. 10(2011) 780-786. [23] L. Shang, H.J. Yu, X. Huang, T. Bian, R. Shi, Y.F. Zhao, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts, Adv. Mater. 28(2016) 1668-1674. [24] Y. Zheng, W. Wang, D. Jiang, L. Zhang, X. Li, Z. Wang, Ultrathin mesoporous Co3O4 nanosheets with excellent photo-/thermo-catalytic activity, J. Mater. Chem. A 4(2016) 105-112. [25] L. Zhang, H. Li, K. Li, L. Li, J. Wei, L. Feng, Q. Fu, Morphology-controlled fabrication of Co3O4 nanostructures and their comparative catalytic activity for oxygen evolution reaction, J. Alloys Compd. 680(2016) 146-154. [26] Y. Dong, K. He, L. Yin, A. Zhang, A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties, Nanotechnology 18(2007) 435602. [27] Q. Qu, J.H. Zhang, J. Wang, Q.Y. Li, C.W. Xu, X. Lu, Three-dimensional ordered mesoporous Co3O4 enhanced by Pd for oxygen evolution reaction, Sci. Rep. 7(2017) 41542. [28] J. Mujtaba, H. Sun, G. Huang, K. Molhave, Y. Liu, Y. Zhao, X. Wang, S. Xu, J. Zhu, Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials, Sci. Rep. 6(2016) 20592. [29] L.L. Kong, L. Wang, D.Y. Sun, S. Meng, D.D. Xu, Z.X. He, X.Y. Dong, Y.F. Li, Y.C. Jin, Aggregation-morphology-dependent electrochemical performance of Co3O4 anode materials for lithium-ion batteries, Molecules 24(2019) 15. [30] R.Z. Ma, M. Osada, L.F. Hu, T. Sasaki, Self-assembled nanofilm of monodisperse cobalt hydroxide hexagonal platelets:Topotactic conversion into oxide and resistive switching, Chem. Mater. 22(2010) 6341-6346. [31] B.M. Abu-Zied, S.A. Soliman, S.E. Abdellah, Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition, Chin. J. Catal. 35(2014) 1105-1112. [32] N. Muthuswamy, M.E.M. Buan, J.C. Walmsley, M. Ronning, Evaluation of ORR active sites in nitrogen-doped carbon nanofibers by KOH post treatment, Catal. Today 301(2018) 11-16. [33] F. Yu, H.Q. Zhou, Z. Zhu, J.Y. Sun, R. He, J.M. Bao, S. Chen, Z.F. Ren, Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation, ACS Catal. 7(2017) 2052-2057. [34] Z.P. Yao, Y.J. Zhang, Y.Q. He, Q.X. Xia, Z.H. Jiang, Synthesis of hierarchical dendritic micro-nano structure ZnFe2O4 and photocatalytic activities for water splitting, Chin. J. Chem. Eng. 24(2016) 1112-1116. [35] S. Dou, L. Tao, J. Huo, S.Y. Wang, L.M. Dai, Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis, Energy Environ. Sci. 9(2016) 1320-1326. [36] Z.H. Xiao, Y. Wang, Y.C. Huang, Z.X. Wei, C.L. Dong, J.M. Ma, S.H. Shen, Y.F. Li, S.Y. Wang, Filling the oxygen vacancies in Co3O4 with phosphorus:an ultra-efficient electrocatalyst for overall water splitting, Energy Environ. Sci. 10(2017) 2563-2569. [37] I.S. Cho, H.S. Han, M. Logar, J. Park, X.L. Zheng, Enhancing low-bias performance of hematite photoanodes for solar water splitting by simultaneous reduction of bulk, interface, and surface recombination pathways, Adv. Energy Mater. 6(2016) 9. [38] S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, Cobalt oxide surface chemistry:the interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water, J. Mol. Catal. A Chem. 281(2008) 49-58. [39] C.J. Zhao, P.W. Li, D.M. Shao, R.Z. Zhang, S.Q. Wang, Z.Q. Zhu, C.H. Zhao, Phytic acidderived Co2-xNixP2O7-C/RGO and its superior OER electrocatalytic performance, Int. J. Hydrog. Energy 44(2019) 844-852. [40] R.H. Tammam, A.M. Fekry, M.M. Saleh, Enhanced oxygen evolution reaction over glassy carbon electrode modified with NiOx and Fe3O4, Korean J. Chem. Eng. 36(2019) 1932-1939. [41] Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-tmplating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis, Angew. Chem. Int. Edit. 56(2017) 1324-1328. [42] X.F. Cheng, W.H. Leng, D.P. Liu, Y.M. Xu, J.Q. Zhang, C.N. Cao, Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties, J. Phys. Chem. C 112(2008) 8725-8734. [43] F.L. Lai, J.R. Feng, X.B. Ye, W. Zong, G.J. He, Y.E. Miao, X.M. Han, X.Y. Ling, I.P. Parkin, B.C. Pan, Y.F. Sun, T.X. Liu, Energy level engineering in transition-metal doped spinel-structured nanosheets for efficient overall water splitting, J. Mater. Chem. A 7(2019) 827-833. [44] Y.Q. Zhang, B. Ouyang, J. Xu, G.C. Jia, S. Chen, R.S. Rawat, H.J. Fan, Rapid synthesis of cobalt nitride nanowires:highly efficient and low-cost catalysts for oxygen evolution, Angew. Chem. Int. Edit. 55(2016) 8670-8674. [45] R. Frydendal, E.A. Paoli, B.P. Knudsen, B. Wickman, P. Malacrida, I.E.L. Stephens, I. Chorkendorff, Benchmarking the stability of oxygen evolution reaction catalysts:the importance of monitoring mass losses, ChemElectroChem 1(2014) 2075-2081. [46] X.L. Xiong, C. You, Z. Liu, A.M. Asiri, X.P. Sun, Co-doped CuO nanoarray:an efficient oxygen evolution reaction electrocatalyst with enhanced activity, ACS Sustain. Chem. Eng. 6(2018) 2883-2887. [47] C. Spori, J.T.H. Kwan, A. Bonakdarpour, D.P. Wilkinson, P. Strasser, The stability challenges of oxygen evolving catalysts:towards a common fundamental understanding and mitigation of catalyst degradation, Angew. Chem. Int. Edit. 56(2017) 5994-6021. |
[1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[2] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[3] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[4] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
[5] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
[6] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[7] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 56-62. |
[8] | Pascal Habimana, Yanjun Jiang, Jing Gao, Jean Bernard Ndayambaje, Osama M. Darwesh, Jean Pierre Mwizerwa, Xiaobing Zheng, Li Ma. Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 66-75. |
[9] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 48-53. |
[10] | Fu Yang, Wenhao Li, Rui Ou, Yutong Lu, Xuexue Dong, Wenlong Tu, Wenjian Zhu, Xuyu Wang, Lulu Li, Aihua Yuan, Jianming Pan. Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 120-133. |
[11] | Xinyu Yan, Bobo Wang, Hongxia Liang, Jie Yang, Jie Zhao, Fabrice Ndayisenga, Hongxun Zhang, Zhisheng Yu, Zhi Qian. Enhanced straw fermentation process based on microbial electrolysis cell coupled anaerobic digestion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 239-245. |
[12] | Shiqi Yang, Zhentao Wang, Qian Kong, Bin Li, Junfeng Wang. Visualization on electrified micro-jet instability from Taylor cone in electrohydrodynamic atomization [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 456-465. |
[13] | Ying Zhou, Ruiying Li, Zexuan Lv, Jian Liu, Hongjun Zhou, Chunming Xu. Green hydrogen: A promising way to the carbon-free society [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 2-13. |
[14] | Heping Xie, Yunpeng Wang, Tao Liu, Yifan Wu, Wenchuan Jiang, Cheng Lan, Zhiyu Zhao, Liangyu Zhu, Dongsheng Yang. Electrochemical CO2 mineralization for red mud treatment driven by hydrogen-cycled membrane electrolysis [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 14-23. |
[15] | Shusheng Li, Rui Kuang, Xiangzheng Kong, Xiaoli Zhu, Xubao Jiang. Immobilization of cobalt oxide nanoparticles on porous nitrogen-doped carbon as electrocatalyst for oxygen evolution [J]. Chinese Journal of Chemical Engineering, 2022, 52(12): 10-18. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 408
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||