Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 29-36.DOI: 10.1016/j.cjche.2020.11.014
Previous Articles Next Articles
Yanfeng Liu1,2,3, Xiaomin Dong1,2,3, Bin Wang1,2,3, Rongzhen Tian1,2,3, Jianghua Li1,2,3, Long Liu1,2,3, Guocheng Du1,2,3, Jian Chen3,4
Received:
2020-10-15
Revised:
2020-11-25
Online:
2021-05-15
Published:
2021-02-28
Contact:
Yanfeng Liu, Jian Chen
Supported by:
Yanfeng Liu1,2,3, Xiaomin Dong1,2,3, Bin Wang1,2,3, Rongzhen Tian1,2,3, Jianghua Li1,2,3, Long Liu1,2,3, Guocheng Du1,2,3, Jian Chen3,4
通讯作者:
Yanfeng Liu, Jian Chen
基金资助:
Yanfeng Liu, Xiaomin Dong, Bin Wang, Rongzhen Tian, Jianghua Li, Long Liu, Guocheng Du, Jian Chen. Food synthetic biology-driven protein supply transition: From animal-derived production to microbial fermentation[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 29-36.
Yanfeng Liu, Xiaomin Dong, Bin Wang, Rongzhen Tian, Jianghua Li, Long Liu, Guocheng Du, Jian Chen. Food synthetic biology-driven protein supply transition: From animal-derived production to microbial fermentation[J]. 中国化学工程学报, 2021, 29(2): 29-36.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.11.014
[1] R. Rezaei, Z. Wu, Y. Hou, F.W. Bazer, G. Wu, Amino acids and mammary gland development: Nutritional implications for milk production and neonatal growth, J. Anim. Sci. Biotechnol. 7 (2016) 20. [2] I. Elmadfa, A.L. Meyer, Animal proteins as important contributors to a healthy human diet, Annu. Rev. Anim. Biosci. 5 (2017) 111–131. [3] G. Wu, B. Imhoff-Kunsch, A.W. Girard, Biological mechanisms for nutritional regulation of maternal health and fetal development, Paediatr. Perinat. EPidemiol. 26 (Supplement 1) (2012) 4–26. [4] J. Bauer, G. Biolo, T. Cederholm, M. Cesari, A.J. Cruz-Jentoft, J.E. Morley, S. Phillips, C. Sieber, P. Stehle, D. Teta, R. Visvanathan, E. Volpi, Y. Boirie, Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group, Am. Med. Direct. Associa 14 (2013) 542–559. [5] M.J. Boland, A.N. Rae, J.M. Vereijken, M.P.M. Meuwissen, A.R.H. Fischer, M.A.J. S. van Boekel, S.M. Rutherfurd, H. Gruppen, P.J. Moughan, W.H. Hendriks, The future supply of animal-derived protein for human consumption, Trends Food Sci. Technol. 29 (2013) 62–73. [6] E.S. Cassidy, P.C. West, J.S. Gerber, J.A. Foley, Redefining agricultural yields: from tonnes to people nourished per hectare, Environ. Res. Lett. 8 (2013) 034015. [7] M.M. Mekonnen, A.Y. Hoekstra, A global assessment of the water footprint of farm animal products, Ecosystems 15 (2020) 401–415. [8] L. Lei, S. Shimokawa, Promoting dietary guidelines and environmental sustainability in China, China Economic Review 59 (2020) 101087. [9] A. Shepon, G. Eshel, E. Noor, R. Milo, The opportunity cost of animal based diets exceeds all food losses, Proc. Natl. Acad. Sci. USA 115 (2018) 3804–3809. [10] H. Aiking, Future protein supply, Trends Food Sci. Technol. 22 (2011) 112–120. [11] K.E. French, Harnessing synthetic biology for sustainable development, Nat. Sustain. 2 (2019) 250–252. [12] D.E. Cameron, C.J. Bashor, J.J. Collins, A brief history of synthetic biology, Nat. Rev. Microbiol. 12 (2014) 381–390. [13] Y.F. Flores Bueso, M. Tangney, Synthetic biology in the driving seat of the bioeconomy, Trends Biotechnol. 35 (2017) 373–378. [14] T. Decoene, B. de Paepe, J. Maertens, P. Coussement, G. Peters, S.L. de Maeseneire, M. de Mey, Standardization in synthetic biology: An engineering discipline coming of age, Rev. Biotechnol. Crit. Rev. Biotechnol. 38 (2018) 647–656. [15] E.T. Wurtzel, C.E. Vickers, A.D. Hanson, A.H. Millar, M. Cooper, K.P. Voss-Fels, P.I. Nikel, T.J. Erb, Revolutionizing agriculture with synthetic biology, Nat. Plants 5 (2019) 1207–1210. [16] A. Tyagi, A. Kumar, S.V. Aparna, R.H. Mallappa, S. Grover, V.K. Batish, Synthetic biology: Applications in the food sector, Crit. Rev. Food Sci. Nutr. 56 (2016) 1777–1789. [17] S. Chriki, J.F. Hocquette, The myth of cultured meat: A review, Front. Nutr. 7 (2020) 7. [18] Dietary protein quality evaluation in human nutrition. Report of an FAQ Expert Consultation, FAO Food Nutr. Pap. 92 (2013) 1–66. [19] N. Shivakumar, S. Kashyap, S. Kishore, T. Thomas, A. Varkey, S. Devi, T. Preston, F. Jahoor, M.S. Sheshshayee, A.V. Kurpad, Protein-quality evaluation of complementary foods in Indian children, Am. J. Clin. Nutr. 109 (2019) 1319–1327. [20] M.K. Gaydhane, U. Mahanta, C.S. Sharma, M. Khandelwal, S. Ramakrishna, Cultured meat: State of the art and future, Biomanuf. Rev. 3 (2018) 1. [21] H.J. Lee, H.I. Yong, M. Kim, Y.S. Choi, C. Jo, Status of meat alternatives and their potential role in the future meat market -A review, Asian-Australas. J. Anim. Sci. 33 (2020) 1533–1543. [22] M. Siegrist, B. Sütterlin, C. Hartmann, Perceived naturalness and evoked disgust influence acceptance of cultured meat, Meat. Sci. 139 (2018) 213–219. [23] A. Dance, Engineering the animal out of animal products, Nature Publishing Group, 2017. [24] G. Caire-Juvera, F.A. Vázquez-Ortiz, M.I. Grijalva-Haro, Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in northwest Mexico, Nutr. Hosp. 28 (2013) 365–371. [25] P.N. Seong, K.M. Park, S.H. Cho, S.M. Kang, G.H. Kang, B.Y. Park, S.S. Moon, H.V. van Ba, Characterization of edible pork By-Products by means of yield and nutritional composition, Korean J. Food Sci. Anim. Resour. 34 (2014) 297–306. [26] S.H.M. Gorissen, J.J.R. Crombag, J.M.G. Senden, W.A.H. Waterval, J. Bierau, L.B. Verdijk, L.J.C. van Loon, Protein content and amino acid composition of commercially available plant-based protein isolates, Amino Acids 50 (2018) 1685–1695. [27] T. Searchinger, R. Heimlich, R.A. Houghton, et al., Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change, Science 319 (5867) (2008) 1238–1240. [28] T. Garnett, Livestock-related greenhouse gas emissions: Impacts and options for policy makers, Environ. Sci. Policy 12 (2009) 491–503. [29] B. Gómez, P.E.S. Munekata, Z. Zhu, F.J. Barba, F. Toldrá, P. Putnik, D.B. Bursać Kovačević, J.M. Lorenzo, Challenges and opportunities regarding the use of alternative protein sources: Aquaculture and insects, Adv. Food Nutr. Res. 89 (2019) 259–295. [30] D. Vandamme, I. Foubert, B. Meesschaert, K. Muylaert, Flocculation of microalgae using cationic starch, J. Appl. Phycol. 22 (2010) 525–530. [31] M. Hayes, H. Skomedal, K. Skjånes, H. Mazur-Marzec, A. Toruńska-Sitarz, M. Catala, M. Isleten Hosoglu, M. García-Vaquero, in: Microalgal proteins for feed, food and health, in: Microalgae-based biofuels and bioproducts Woodhead publishing series in energy C, Woodhead Publishing, 2017, pp. 347–368. [32] L. Soto-Sierra, P. Stoykova, Z.L. Nikolov, Extraction and fractionation of microalgae-based protein products, Algal Research 36 (2018) 175–192. [33] S. Patel, H.A.R. Suleria, A. Rauf, Edible insects as innovative foods: Nutritional and functional assessments, Trends Food Sci. Technol. 86 (2019) 352–359. [34] A. van Huis, D.G.A.B. Oonincx, The environmental sustainability of insects as food and feed. A review, Agron. Sustain. Dev. 37 (2017) 43. [35] A. Pihlanto, P. Mattila, S. Mäkinen, A.M. Pajari, Bioactivities of alternative protein sources and their potential health benefits, Food Funct. 8 (2017) 3443–3458. [36] Y. Sui, S.E. Vlaeminck, Dunaliella microalgae for nutritional protein: An undervalued asset, Trends Biotechnol. 38 (2020) 10–12. [37] S. Bleakley, M. Hayes, Algal proteins: Extraction, application, and challenges concerning production, Foods 6 (2017) 33. [38] Y. Akhtar, M.B. Isman, Insects as an alternative protein source, in: Proteins in food processing, Elsevier, 2018, pp. 263–288. [39] A.G.A. Sá, Y.M.F. Moreno, B.A.M. Carciofi, Plant proteins as high-quality nutritional source for human diet, Trends Food Sci. Technol. 97 (2020) 170–184. [40] A. Ritala, S.T. Häkkinen, M. Toivari, M.G. Wiebe, Single cell protein-State-ofthe-art, industrial landscape and patents 2001–2016, Front. Microbiol. 8 (2017) 2009. [41] M. van der Spiegel, M.Y. Noordam, H.J. van der Fels-Klerx, Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production, Compr. Rev. Food Sci. F. 12 (2013) 662–678. [42] C. Bryant, K. Szejda, N. Parekh, V. Deshpande, B. Tse, A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China, Front. Sustain. Food Syst. 3 (2019) 11. [43] A. Haug, A.T. Høstmark, O.M. Harstad, Bovine milk in human nutrition -A review, Lipids Health Dis. 6 (2007) 25. [44] A. Foroutan, A.C. Guo, R. Vazquez-Fresno, M. Lipfert, L. Zhang, J. Zheng, H. Badran, Z. Budinski, R. Mandal, B.N. Ametaj, D.S. Wishart, Chemical composition of commercial cow’s milk, J. Agric. Food Chem. 67 (2019) 4897–4914. [45] J.A. Lucey, D. Otter, D.S. Horne, A 100-year Review: Progress on the chemistry of milk and its components, J. Dairy Sci. 100 (2017) 9916–9932. [46] M. Albenzio, A. Santillo, M.G. Ciliberti, L. Figliola, M. Caroprese, R. Marino, A.N. Polito, Milk from different species: Relationship between protein fractions and inflammatory response in infants affected by generalized epilepsy, J. Dairy Sci. 99 (2016) 5032–5038. [47] W.L. Claeys, C. Verraes, S. Cardoen, J. de Block, A. Huyghebaert, K. Raes, K. Dewettinck, L. Herman, Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits, Food Control 42 (2014) 188–201. [48] T. Uniacke-Lowe, T. Huppertz, P.F. Fox, Equine milk proteins: Chemistry, structure and nutritional significance, Int. Dairy J. 20 (2010) 609–629. [49] S. Séverin, X. Wenshui, Milk biologically active components as nutraceuticals: Review: Review, Crit. Rev. Food Sci. Nutr. 45 (2005) 645–656. [50] T.T.P. Nguyen, B. Bhandari, J. Cichero, S. Prakash, A comprehensive review on in vitro digestion of infant formula, Food Res. Int. 76 (2015) 373–386. [51] J. Barłowska, M. Szwajkowska, Z. Litwińczuk, J. Król, Nutritional value and technological suitability of milk from various animal species used for dairy production, Compr. Rev. Food Sci. F. 10 (2011) 291–302. [52] B. Grenov, K.F. Michaelsen, Growth components of cow’s milk: Emphasis on effects in undernourished children, Food Nutr. Bull. 39 (2018) S45–S53. [53] E.I. Elagamy, Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: A comparison with cows’ and buffalo milk proteins, Food Chem. 68 (2000) 227–232. [54] A.M. Caroli, S. Chessa, G.J. Erhardt, Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition, J. Dairy Sci. 92 (2009) 5335–5352. [55] A. Szilagyi, N. Ishayek, Lactose intolerance, dairy avoidance, and treatment options, Nutrients 10 (2018) 1994. [56] S.S. Epstein, Potential public health hazards of biosynthetic milk hormones, Health Servi., Int. J. Health Serv. 20 (1990) 73–84. [57] W.J. Craig, Health effects of vegan diets, Am. J. Clin. Nutr. 89 (2009) 1627S–1633S. [58] W.J. Craig, Nutrition concerns and health effects of vegetarian diets, Nutr. Clin. Pract. 25 (2010) 613–620. [59] C.A. Rotz, F. Montes, D.S. Chianese, The carbon footprint of dairy production systems through partial life cycle assessment, J. Dairy Sci. 93 (2010) 1266–1282. [60] J.R. Knapp, G.L. Laur, P.A. Vadas, W.P. Weiss, J.M. Tricarico, Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions, J. Dairy Sci. 97 (2014) 3231–3261. [61] R. Ibarra, K.M. Rich, M. Adasme, A. Kamp, R.S. Singer, M. Atlagich, C. Estrada, R. Jacob, N. Zimin-Veselkoff, J. Escobar-Dodero, F.O. Mardones, Animal production, animal health and food safety: Gaps and challenges in the Chilean industry, Food Microbiol. 75 (2018) 114–118. [62] S. Sethi, S.K. Tyagi, R.K. Anurag, Plant-based milk alternatives an emerging segment of functional beverages: A review, J. Food Sci. Technol. 53 (2016) 3408–3423. [63] M. Tangyu, J. Muller, C.J. Bolten, C. Wittmann, Fermentation of plant-based milk alternatives for improved flavour and nutritional value, Appl. Microbiol. Biotechnol. 103 (2019) 9263–9275. [64] O.E. Mäkinen, V. Wanhalinna, E. Zannini, E.K. Arendt, Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products, Crit. Rev. Food Sci. Nutr. 56 (2016) 339–349. [65] A. Deswal, N.S. Deora, H.N. Mishra, Optimization of enzymatic production process of oat milk using response surface methodology, Food Bioprocess Technol. 7 (2014) 610–618. [66] K. Diarra, Z.G. Nong, C. Jie, Peanut milk and peanut milk based products production: A review, Crit. Rev. Food Sci. Nutr. 45 (2005) 405–423. [67] M. Namiki, Nutraceutical functions of sesame: A review, Crit. Rev. Food Sci. Nutr. 47 (2007) 651–673. [68] S.K. Vanga, V. Raghavan, How well do plant based alternatives fare nutritionally compared to cow’s milk, J. Food Sci. Technol. 55 (2018) 10–20. [69] Y.-H.-P. Zhang, J. Sun, Y. Ma, Biomanufacturing: History and perspective, J. Ind. Microbiol. Biotechnol. 44 (2017) 773–784. [70] M. Yadav, P. Shukla, Efficient engineered probiotics using synthetic biology approaches: A review, Biotechnol. Appl. Biochem. 67 (2020) 22–29. [71] L. Liu, J.L. Martínez, Z. Liu, D. Petranovic, J. Nielsen, Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae, Metab. Eng. 21 (2014) 9–16. [72] J.L. Martínez, L. Liu, D. Petranovic, J. Nielsen, Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae, Biotechnol. Bioeng. 112 (2015) 181–188. [73] Y.H. Choi, B.S. Park, J.H. Seo, B.G. Kim, Biosynthesis of the human milk oligosaccharide 3-fucosyllactose in metabolically engineered Escherichia coli via the salvage pathway through increasing GTP synthesis and bgalactosidase modification, Biotechnol. Bioeng. 116 (2019) 3324–3332. [74] S. Yu, J.J. Liu, E.J. Yun, S. Kwak, K.H. Kim, Y.S. Jin, Production of a human milk oligosaccharide 20-fucosyllactose by metabolically engineered Saccharomyces cerevisiae, Microb. Cell Factories 17 (2018) 101. [75] X. Dong, N. Li, Z. Liu, X. Lv, Y. Shen, J. Li, G. Du, M. Wang, L. Liu, CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis, J. Agric. Food Chem. 68 (2020) 2477–2484. [76] J. Deng, L. Gu, T. Chen, H. Huang, X. Yin, X. Lv, Y. Liu, N. Li, Z. Liu, J. Li, G. Du, L. Liu, Engineering the substrate transport and cofactor regeneration systems for enhancing 20-fucosyllactose synthesis in Bacillus subtilis, ACS Synth. Biol. 8 (2019) 2418–2427. [77] D. Huang, K. Yang, J. Liu, Y. Xu, Y. Wang, R. Wang, B. Liu, L. Feng, Metabolic engineering of Escherichia coli for the production of 20-fucosyllactose and 3-fucosyllactose through modular pathway enhancement, Metab. Eng. 41 (2017) 23–38. [78] S. Drouillard, T. Mine, H. Kajiwara, T. Yamamoto, E. Samain, Efficient synthesis of 60-sialyllactose, 6,60-disialyllactose, and 60-KDO-lactose by metabolically engineered E. coli expressing a multifunctional sialyltransferase from the Photobacterium sp. JT-ISH-224, Carbohydr. Res. 345 (2010) 1394–1399. [79] S.H. Wang, T.S. Yang, S.M. Lin, M.S. Tsai, S.C. Wu, S.J. Mao, Expression, characterization, and purification of recombinant porcine lactoferrin in pichia pastoris, Protein Expr. Purif. 25 (2002) 41–49. [80] D. Latorre, P. Puddu, P. Valenti, S. Gessani, Reciprocal interactions between lactoferrin and bacterial endotoxins and their role in the regulation of the immune response, Toxins (Basel) 2 (2010) 54–68. [81] H.J. Vogel, Lactoferrin, a bird’s eye view, Biochem. Cell Biol. 90 (2012) 233–244. [82] H. Jenssen, R.E. Hancock, Antimicrobial properties of lactoferrin, Biochimie 91 (2009) 19–29. [83] W.S. Kim, K.-I. Shimazaki, T. Tamura, Expression of bovine lactoferrin C-lobe in Rhodococcus erythropolis and its purification and characterization, Biosci. Biotechnol. Biochem. 70 (2006) 2641–2645. [84] I. García-Montoya, S.A. González-Chávez, J. Salazar-Martínez, S. ArévaloGallegos, S. Sinagawa-García, Q. Rascón-Cruz, Expression and characterization of recombinant bovine lactoferrin in E. coli, Biometals 26 (2013) 113–122. [85] L. Jin, L. Li, L. Zhou, R. Zhang, Y. Xu, J. Li, Improving expression of bovine lactoferrin N-lobe by promoter optimization and codon engineering in Bacillus subtilis and its antibacterial activity, J. Agric. Food Chem. 67 (2019) 9749–9756. [86] G.A. Antova, V.T. Gerzilov, Z.Y. Petkova, V.N. Boncheva, I.N. Bozhichkova, D.St. St Penkov, P.B. Petrov, Comparative analysis of nutrient content and energy of eggs from different chicken genotypes, J. Sci. Food Agric. 99 (2019) 5890–5898. [87] S.M. Ackermann, D.W. Lachenmeier, T. Kuballa, B. Schütz, M. Spraul, M. Bunzel, NMR-based differentiation of conventionally from organically produced chicken eggs in Germany, Magn. Reson. Chem. 57 (2019) 579–588. [88] J.H. Lee, H.D. Paik, Anticancer and immunomodulatory activity of egg proteins and peptides: A review, Poult. Sci. 98 (2019) 6505–6516. [89] C. D’Ambrosio, S. Arena, A. Scaloni, L. Guerrier, E. Boschetti, M.E. Mendieta, A. Citterio, P.G. Righetti, Exploring the chicken egg white proteome with combinatorial peptide ligand libraries, J. Proteome Res. 7 (2008) 3461–3474. [90] A. Farinazzo, U. Restuccia, A. Bachi, L. Guerrier, F. Fortis, E. Boschetti, E. Fasoli, A. Citterio, P.G. Righetti, Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries, J. Chromatogr. A 1216 (2009) 1241–1252. [91] D.J. McNamara, The fifty year rehabilitation of the egg, Nutrients 7 (2015) 8716–8722. [92] Z.S. Clayton, E. Fusco, M. Kern, Egg consumption and heart health: A review, Nutrition 37 (2017) 79–85. [93] K.L. Herron, M.L. Fernandez, Are the current dietary guidelines regarding egg consumption appropriate?, J. Nutr. 134 (2004) 187–190. [94] A. D’Alessandro, P.G. Righetti, E. Fasoli, L. Zolla, The egg white and yolk interactomes as gleaned from extensive proteomic data, J. Proteomics 73 (2010) 1028–1042. [95] I. Arozarena, H. Bertholo, J. Empis, A. Bunger, I. Sousa, Study of the total replacement of egg by white lupine protein, emulsifiers and xanthan gum in yellow cakes, Eur. Food Res. Technol. 213 (2001) 312–316. [96] E. Wilderjans, B. Pareyt, H. Goesaert, K. Brijs, J.A. Delcour, The role of gluten in a pound cake system: A model approach based on gluten–starch blends, Food Chem. 110 (2008) 909–915. [97] M. Lin, S.H. Tay, H. Yang, B. Yang, H. Li, Replacement of eggs with soybean protein isolates and polysaccharides to prepare yellow cakes suitable for vegetarians, Food Chem. 229 (2017) 663–673. [98] Y.Y. Shim, R. Mustafa, J. Shen, K. Ratanapariyanuch, M.J.T. Reaney, Composition and properties of aquafaba: Water recovered from commercially canned chickpeas, J. Vis. Exp. 56305 (2018). [99] Y. He, Y.Y. Shim, R. Mustafa, V. Meda, M.J.T. Reaney, Chickpea cultivar selection to produce aquafaba with superior emulsion properties, Foods 8 (2019) 685. [100] R. Jyotsna, R.S. Sai Manohar, D. Indrani, G. Venkateswara Rao, Effect of whey protein concentrate on the rheological and baking properties of eggless cake, Int. J. Food Prop. 10 (2007) 599–606. [101] S.H. Wani, A. Gull, F. Allaie, T.A. Safapuri, F. Yildiz, Effects of incorporation of whey protein concentrate on physicochemical, texture, and microbial evaluation of developed cookies, Cogent Food Agric. 1 (2015), https://doi.org/10.1080/23311932.2015.1092406. [102] F. Geng, Y. Xie, J. Wang, S. Li, Y. Jin, M. Ma, Large-scale purification of ovalbumin using polyethylene glycol precipitation and isoelectric precipitation, Poult. Sci. 98 (2019) 1545–1550. [103] T.H. Fraser, B.J. Bruce, Chicken ovalbumin is synthesized and secreted by Escherichia coli, Proc. Natl. Acad. Sci. USA 75 (1978) 5936–5940. [104] Y. Liu, A. Su, R. Tian, J. Li, L. Liu, G. Du, Developing rapid growing Bacillus subtilis for improved biochemical and recombinant protein production, Metab. Eng. Commun. 11 (2020) e00141. [105] V. Upadhyay, A. Singh, A.K. Panda, Purification of recombinant ovalbumin from inclusion bodies of Escherichia coli, Protein Expr. Purif. 117 (2016) 52–58. [106] P. Rupa, Y. Mine, Immunological comparison of native and recombinant egg allergen, ovalbumin, expressed in Escherichia coli, Biotechnol. Lett. 25 (2003) 1917–1924. [107] R. Kent, N. Dixon, Contemporary tools for regulating gene expression in bacteria, Trends Biotechnol. 38 (2020) 316–333. [108] A.S. Ondracek, D. Heiden, G.J. Oostingh, E. Fuerst, J. Fazekas-Singer, C. Bergmayr, J. Rohrhofer, E. Jensen-Jarolim, A. Duschl, E. Untersmayr, Immune effects of the nitrated food allergen beta-lactoglobulin in an experimental food allergy model, Nutrients 11 (2019) 2463. [109] J. Sanchón, S. Fernández-Tomé, B. Miralles, B. Hernández-Ledesma, D. Tomé, C. Gaudichon, I. Recio, Protein degradation and peptide release from milk proteins in human jejunum. Comparison with in vitro gastrointestinal simulation, Food Chem. 239 (2018) 486–494. [110] H. Yang, Y. Liu, J. Li, L. Liu, G. Du, J. Chen, Systems metabolic engineering of Bacillus subtilis for efficient biosynthesis of 5-methyltetrahydrofolate, Biotechnol. Bioeng. 117 (2020) 2116–2130. [111] Á. Peirotén, J.M. Landete, Natural and engineered promoters for gene expression in Lactobacillus species, Appl. Microbiol. Biotechnol. 104 (2020) 3797–3805. |
[1] | Xueying Zhu, Zhaoyang Zhang, Bin Jia, Yingjin Yuan. Current advances of biocontainment strategy in synthetic biology [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 141-151. |
[2] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 56-62. |
[3] | Xiaoyan Zhuang, Qian Wu, Aihui Zhang, Langxing Liao, Baishan Fang. Single-molecule biotechnology for protein researches [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 212-224. |
[4] | Yu Kiat Lin, Hui Yi Leong, Tau Chuan Ling, Dong-Qiang Lin, Shan-Jing Yao. Raman spectroscopy as process analytical tool in downstream processing of biotechnology [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 204-211. |
[5] | Huiling Wei, Mengyue Wu, Aili Fan, Haijia Su. Recombinant protein production in the filamentous fungus Trichoderma [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 74-81. |
[6] | Yuting Huang, Liyang Wang, Xue Zhang, Nan Su, Heping Li, Yoshimitsu Oda, Xinhui Xing. Quantitative evaluation of DNA damage caused by atmospheric and room-temperature plasma (ARTP) and other mutagenesis methods using a rapid umu-microplate test protocol for microbial mutation breeding [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 205-210. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||