[1] M.M. Wang, Z. Wei, L. Xu, B. Liu, H. Jiao, Two temperature-controlled zinc coordination polymers:ionothermal synthesis, properties, and dye adsorption, Eur. J. Inorg. Chem. 7(2018) 932-939. [2] Y.F. Cheng, Q. Cao, J. Zhang, T. Wu, R. Che, Efficient photodegradation of dye pollutants using a novel plasmonic AgCl microrods array and photo-optimized surface-enhanced Raman scattering, Appl. Catal. B:Environ. 217(2017) 37-47. [3] S.S.F. Carvalho, N.M.F. Carvalho, Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis, J. Environ. Manage. 187(2017) 82-88. [4] W. Yan, L.J. Han, H.L. Jia, K. Shen, T. Wang, H.G. Zheng, Three highly stable cobalt MOFs based on "Y"-shaped carboxylic acid:Synthesis and absorption of anionic dyes, Inorg. Chem. 55(2016) 8816-8821. [5] Y. Jia, Y. Wen, X. Han, J. Qi, Z. Liu, S. Zhang, G. Li, Electrocatalytic degradation of rice straw lignin in alkaline solution through oxidation on a Ti/SnO2-Sb2O3/α-PbO2/β-PbO2 anode and reduction on an iron or tin doped titanium cathode, Catal. Sci. Technol. 8(2018) 4665-4677. [6] O. Shmychkova, T. Luk'yanenko, R. Amadelli, A. Velichenko, Electrodeposition of Ce-doped PbO2, J. Electroanal. Chem. 706(2013) 86-92. [7] Y. Li, C. Zhao, Enhancing water oxidation catalysis on a synergistic phosphorylated nife hydroxide by adjusting catalyst wettability, ACS. Catal. 7(2017) 2535-2541. [8] M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells, Chem. Soc. Rev. 42(2013) 3453-3488. [9] Q. Qiao, S. Singh, S.L. Lo, Y. Li, J. Jin, L. Wang, Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and Co-modified PbO2 electrodes:Preparation, characterization, optimization, and mineralization, J. Taiwan. Inst. Chem. E. 84(2018) 110-122. [10] T.É.S. Santos, R.S. Silva, C.T. Meneses, C.A. Martínez-Huitle, K.I.B. Eguiluz, G.R. Salazar-Banda, Unexpected enhancement of electrocatalytic nature of Ti/(RuO2)x-(Sb2O5)y anodes prepared by the ionic liquid-thermal decomposition method, Ind. En. Chem. Res. 55(2016) 3182-3187. [11] C.A.M. Inez-Huitle, A.D. Battisti, S. Ferro, S. Reyna, M.O. Cerro-L, M.A. Quiro, Removal of the pesticide methamidophos from aqueous solutions by electrooxidation using Pb-PbO2, Ti-SnO2, and Si-BDD electrodes, Environ. Sci. Technol 42(2008) 6929-6935. [12] C. Zhang, J. Liu, B. Chen, Effect of CeO2 and graphite powder on the electrochemical performance of Ti/PbO2 anode for zinc electrowinning, Ceram. Int. 44(2018) 19735-19742. [13] J. Lyu, H. Han, Q. Wu, H. Ma, C. Ma, X. Dong, Y. Fu, Enhancement of the electrocatalytic oxidation of dyeing wastewater (reactive brilliant blue KN-R) over the Ce-doped Ti-PbO2 electrode with surface hydrophobicity, J. Solid. State. Chem. 23(2019) 847-859. [14] X. Duan, F. Xu, Y. Wang, Y. Chen, L. Chang, Fabrication of a hydrophobic SDBSPbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution, Electrochim. Acta 282(2018) 662-671. [15] X. Duan, X. Sui, W. Wang, W. Bai, L. Chang, Fabrication of PbO2/SnO2 composite anode for electrochemical degradation of 3-chlorophenol in aqueous solution, Appl. Surf. Sci. 494(2019) 211-222. [16] X. Sui, X. Duan, F. Xu, L. Chang, Fabrication of three-dimensional networked PbO2 anode for electrochemical oxidation of organic pollutants in aqueous solution, J. Taiwan. Inst. Chem. E 100(2019) 74-84. [17] F. Xu, L. Chang, X. Duan, W. Bai, X. Sui, X. Zhao, A novel layer-by-layer CNTPbO2 anode for high-efficiency removal of PCP-Na through combining adsorption-electrosorption and electrocatalysis, Electrochim. Acta 300(2019) 53-66. [18] Z. Wang, M. Xu, F. Wang, X. Liang, Y. Wei, Y. Hu, C.G. Zhu, W. Fang, Preparation and characterization of a novel Ce doped PbO2 electrode based on NiO doped Ti/TiO2NTs substrate for the electrocatalytic degradation of phenol wastewater, Electrochim. Acta 247(2017) 535-547. [19] X. Hu, Y. Yu, L. Yang, Electrocatalytic activity of Ce-PbO2/C anode for acid red B reduction in aqueous solution, J. Solid State Electr. 19(2015) 1599-1609. [20] H.B. Yu, Y.N. Song, B. Zhao, Y. Lu, S.Y. Zhu, J. Qu, X.H. Wang, W.C. Qin, Efficient electrocatalytic degradation of 4-Chlorophenol using a Ti/RuO2-SnO2-TiO2/PbO2-CeO2 composite electrode, Electrocatalysis 9(2018) 725-734. [21] Y.W. Yao, L.M. Jiao, L.H. Cui, N.C. Yu, F. Wei, Z.M. Lu, Preparation and characterization of PbO2-CeO2 nanocomposite electrode with high Ce content and its appplication in the electrocatalytic degradation of malachite green, J. Electrochem. Soc. 162(2015) H693-H698. [22] X. Li, D. Pletcher, F.C. Walsh, Electrodeposited lead dioxide coatings, Chem. Soc. Rev. 40(2011) 3879-3894. [23] Q. Li, Q. Zhang, H. Cui, L. Ding, Z. Wei, J. Zhai, Fabrication of Ce-doped lead dioxide anode with improved electrocatalytic activity and its application for removal of rhodamine B, Chem. Eng. J. 228(2013) 806-814. [24] S. Ai, M. Gao, W. Zhang, Q. Wang, Y. Xie, L. Jin, Preparation of Ce-PbO2 doped electrode and its application in detection of anilines, Talanta 62(2004) 445-450. [25] C.A. Basha, R. Saravanathamizhan, V. Nandakumar, K. Chitra, C.W. Lee, Copper recovery and simultaneous COD removal from copper phthalocyanine dye effluent using bipolar disc reactor, Chem. Eng. Res. Des. 91(2011) 552-559. [26] G. Zhao, Y. Zhang, Y. Lei, B. Lv, J. Gao, Y. Zhang, D. Li, Fabrication and electrochemical treatment application of a novel lead dioxide anode with superhydrophobic surfaces, high oxygen evolution potential, and oxidation capability, Environ. Sci. Technol. 44(2010) 1754-1759. |